Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Application of EASA Part 21 Requirement Regarding Change to Aircraft Type Design by Airbus

2013-09-17
2013-01-2124
Airbus business and Extended Enterprise require more and more involvement of design and built suppliers, tier 1 but also across the complete supply chain i.e. tier 2-n. These suppliers are not working only for Aerospace industry and may have different cultures. The pressure on cost and overall efficiency is high and everybody has to cope with obsolescence and new regulation (e.g. REACH (Registration, Evaluation and Authorization and Restriction of Chemicals)). So it became very important for Airbus to clarify the criteria under which a change can be done without Airbus review, and criteria under which a change can be done without Airworthiness authority review.
Journal Article

Application of Model Based Functional Specification Methods to Environmental Control Systems Engineering

2011-10-18
2011-01-2504
The paper presents an innovative approach for the functional specification of complex and highly integrated aircraft control systems, such as the Environmental Control System (ECS), by applying model based specification methods. Complexity and effectiveness of modern ECS have significantly increased during the last few years along with development of new technologies and innovations in control engineering as well as digital data distribution and processing. Efficient management of cabin air flows on the one hand makes the ECS more energy-saving and on the other hand more complex with regard to its functionality and interaction with other interfaced aircraft systems. Numerous data interfaces to other systems and a high degree of automation are typical for a modern ECS. The aircraft manufacturer specifies the entire ECS functions and its interactions within the aircraft.
Journal Article

Blind Bolts Developments

2011-10-18
2011-01-2755
There is an ever growing demand for blind fastener in the aerospace industry. This demand is driven not only by the advantages of single sided installation, but also by the potential to fully automate their installation process. Blind fasteners can easily be integrated with innovative end-effectors that combine drilling, installation and inspection systems, enabling the reduction of process cycle times and their associated cost savings. Clearly the advantages of single sided installation are a key benefit, but it cannot be forgotten that currently the mechanical performance of these systems is reduced compared with conventional threaded or swaged parallel shank fasteners. There are other important drawbacks existing around them which could penalise significantly the optimised design and performance of the structures. Specific key characteristics that take into account some of these drawbacks have been established by Airbus which will be referenced in this paper.
Book

Care and Repair of Advanced Composites, Second Edition

2005-06-22
This second edition has been extensively updated to keep pace with the growing use of composite materials in commercial aviation. A worldwide reference for repair technicians and design engineers, the book is an outgrowth of the course syllabus that was developed by the Training Task Group of SAE's Commercial Aircraft Composite Repair Committee (CACRC) and published as SAE AIR 4938, Composite and Bonded Structure Technician Specialist Training Document. Topics new to this edition include: Nondestructive Inspection (NDI) Methods Fasteners for Composite Materials A Method for the Surface Preparation of Metals Prior to Adhesive Bonding Repair Design Although this book has been written primarily for use in aircraft repair other applications including marine and automotive are also covered.
Technical Paper

Development of a High Temperature Power Module Technology with SiC Devices for High Density Power Electronics

2011-10-18
2011-01-2620
This paper presents the development of a high density packaging technology for wide band gap power devices, such as silicon carbide (SiC). These devices are interesting candidates for the next aircraft power electronic converters. Effectively they achieve high switching frequencies thanks to the low losses level. High switching frequencies lead to reduce the passive components size and to an overall weight reduction of power converters. Moreover, SiC devices may enable operation at junction temperatures around 250°C. The cooling requirement is much less stringent than for usual Si devices. This might considerably simplify the cooling system, and reduce the overall weight. To achieve the integration requirements for SiC devices, classical wire bonding interconnection is replaced by a stacked packaging using bump interconnection technologies, called sandwich. These technologies offer two thermal paths to drain heat out and present more power integration possibilities.
Technical Paper

Engine Control, An Aircraft Atypical Computer: How to Set the Standard?

2011-10-18
2011-01-2543
Four years ago Airbus became actively involved in the SAE E36, Electronic Engine Control committee. This paper presents an Airframe Manufacturer view of one current working practices discussion relative to the FADEC electrical hardware change and describes an Airframe Manufacturer views on the committee's effectiveness along with a vision for its future. The SAE E36 committee is a representation of the propulsion control engineering community. The members comes from Airworthiness Authorities and other government and military agencies, airframers, engine manufacturers and control suppliers from North America, South America and Europe (including Russia). An active involvement allows an aircraft manufacturer to participate actively in the process and “to set the standard”. An additional benefit is to be aware of “what's hot”.
Technical Paper

Fixturing and Tooling for Wing Assembly with Reconfigurable Datum System Pickup

2011-10-18
2011-01-2556
The aerospace manufacturing sector is continuously seeking automation due to increased demand for the next generation single-isle aircraft. In order to reduce weight and fuel consumption aircraft manufacturers have increasingly started to use more composites as part of the structure. The manufacture and assembly of composites poses different constraints and challenges compared to the more traditional aircraft build consisting of metal components. In order to overcome these problems and to achieve the desired production rate existing manufacturing technologies have to be improved. New technologies and build concepts have to be developed in order to achieve the rate and ramp up of production and cost saving. This paper investigates how to achieve the rib hole key characteristic (KC) in a composite wing box assembly process. When the rib hole KC is out of tolerances, possibly, the KC can be achieved by imposing it by means of adjustable tooling and fixturing elements.
Technical Paper

IT Security Management of Aircraft in Operation: A Manufacturer's View

2011-10-18
2011-01-2717
Over the last few years, IT systems have quickly found their way onboard aircrafts, driven by the continuous pursuit of improved safety and efficiency in aircraft operation, but also in an attempt to provide the ultimate in-flight experience for passengers. Along with IT systems and communication links came IT security as a new factor in the equation when evaluating and monitoring the operational risk that needs to be managed during the operation of the aircraft. This is mainly due to the fact that security deficiencies can cause services to be unavailable, or even worse, to be exploited by intentional attacks or inadvertent actions. Aircraft manufacturers needed to develop new processes and had to get organized accordingly in order to efficiently and effectively address these new risks.
Technical Paper

Innovation Readiness: Past and Current Drivers in Aeronautical Engineering

2011-10-18
2011-01-2501
This paper proposes a rearview on aeronautical innovation, addresses some 2000-2010 new products, and suggests elements of future vision, serving passengers aspirations. Over 100 years, aeronautics brilliantly domesticated flight: feasibility, safety, efficiency, international travel, traffic volume and noise, allowing airlines to run a business, really connecting real people. Despite some maturations, new developments should extend the notion of passenger service. So far, turbofans became silent and widebodies opened ‘air-bus’ travel for widespread business, tourism or education. Today airports symbolize cities and vitalize regional economies. 2000-2010 saw the full double-decker, the new eco-friendly freighter and electronic ticketing. In technology, new winglets and neo classical engines soon will save short-range blockfuel. In systems and maintenance, integrated modular avionics and onboard data systems give new flexibility, incl by data links to ground.
Technical Paper

Model-Based Safety Assessment for the Three Stages of Refinement of the System Development Process in ARP4754A

2011-10-18
2011-01-2548
Model Based Safety techniques have been developed for a number of years, though the models have not been customised to help address the safety considerations/ actions at each refinement level. The work performed in the MISSA Project looked at defining the content of “safety models” for each of the refinement levels. A modelling approach has been defined that provides support for the initial functional hazard analysis, then for the systems architectural definition level and finally for the systems implementation level. The Aircraft functional model is used to apportion qualitative and quantitative requirements, the systems architectural level is used to perform a preliminary systems safety analysis to demonstrate that a system architecture can satisfy qualitative and quantitative requirements.
Journal Article

Skills Synergy Leading to RTM Flow Simulation Success Story

2011-10-18
2011-01-2629
Industrial requirements imply optimizing the development cycle, reducing manufacturing costs and reaching marketable product maturity as fast as possible. The design stage often involves multiple sites and various partners. In this context, the use of computer simulation becomes absolutely necessary to meet industrial needs. Nevertheless, this activity can be effective only if it is integrated correctly in the industrial organization. In the aeronautical and space systems industry, mechanical specifications often require the use of composites reinforced by continuous carbon fibers. The goal of this article is to describe how, on a time frame of nearly twenty years, a series of scientific and technical tasks were carried out in partnership in order to develop, validate and implement Resin Transfer Molding (RTM) flow simulation and cure analysis for high performance composites. The research stage started at the university in 1991.
Research Report

The Right Level of Automation for Industry 4.0

2022-05-16
EPR2022013
In its entirety, automation is part of an integrated, multi-disciplinary product development process including the design, process, production, logistics, and systems approach—it depends on all these areas, but it also influences them as well. Automation in aerospace manufacturing is present throughout the entire supply chain, from elementary part manufacturing at suppliers up to final assembly, and a clear understanding of all the benefits (and drawbacks) of automation would help designers and engineers select the right designs for and levels of automation. The Right Level of Automation Within Industry 4.0 examines all impacts of automation that should be known by designers, manufacturers, and companies before investments in automation-related decisions are made—regardless of the which industry they work in. The process and the set of criteria discussed in this report will help decision makers select the right level of automation.
Research Report

Unsettled Technology Areas in Deterministic Assembly Approaches for Industry 4.0

2021-08-20
EPR2021018
Increased production rates and cost reduction are affecting manufacturing in all mobility industry sectors. One enabling methodology that could achieve these goals in the burgeoning “Industry 4.0” environment is the optimized deterministic assembly (DA) approach. It always forms the same final structure and has a strong link to design-for-assembly and design-for-automation. The entire supply chain is considered, with drastic savings at the final assembly line level through recurring costs and lead-time reduction. Unsettled Technology Areas in Deterministic Assembly Approaches for Industry 4.0 examines the evolution of previous assembly principles that lead up to and enable the DA approach, related simulation methodologies, and undefined and unsolved links between these domains. Click here to access the full SAE EDGETM Research Report portfolio.
X