Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparative Study of Non-Asbestos Organics vs. Low Steel Lomets for Humidity Sensitivity

2012-09-17
2012-01-1788
Non-Asbestos Organic (NAO) disc pads and Low Steel Lomet disc pads were subjected to high and low humidity conditions to discover how humidity affects these two classes of formulations for physical properties, friction, wear and noise characteristics. The 2 classes of formulations show similarities and differences in response to increasing humidity. The humidity effect on deformation of the surface microstructure of the gray cast iron disc is also investigated. Humidity implications for pad quality control and brake testing are discussed.
Technical Paper

A Developing Process of Newly Developed Electromagnetic Valve Actuator - Effect of Design and Operating Parameters

2002-10-21
2002-01-2817
Electromagnetic valve (EMV) actuation system is a new technology for the improvement of fuel efficiency and the reduction of emissions in SI engines. It can provide more flexibility in valve event control compared to conventional variable valve actuation devices. However, a more powerful and efficient actuator design is needed for this technology to be applied in mass production engines. This paper presents the effects of design and operating parameters on the thermal, static and dynamic performances of the actuator. The finite element method (FEM) and computer simulation models are used in predicting the solenoid forces, dynamic characteristics and thermal characteristics of the actuator. Effect of design parameters and operating environment on the actuator performance were verified before making prototypes using the analytical models. To verify the accuracy of the simulation model, experimental study is also carried out on a prototype actuator.
Journal Article

A Development of Energy Management System with Semi-Transparent Solar Roof and Off-Cycle Credit Test Methodology for Solar Power Assisted Automobile.

2017-03-28
2017-01-0388
CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
Technical Paper

A Development of Fuel Saving Driving Technique for Parallel HEV

2018-04-03
2018-01-1006
This paper examines the effect of pulse-and-glide (PnG) driving strategies on the fuel efficiency when applied on parallel HEVs. Several PnG strategies are proposed, and these include the electrical, mechanical, and combined PnG strategies. The electrical PnG strategy denotes the hybrid powertrain control tactics in which the battery is charged or discharged according to the power demanded while maintaining the constant vehicle speed. On the other hand, the mechanical PnG strategy denotes the powertrain control tactics in which the vehicle accelerates or decelerates according to the power load while minimizing the battery usage. The combined PnG strategy involves both electrical and mechanical strategies to find a balanced point in between them. Here, a tradeoff relationship between the fuel efficiency and the vehicle drivability related to the tracking performance of the desired target speed is revealed.
Technical Paper

A Flexible Multi-Body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

2007-04-16
2007-01-0852
This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of 1∼2mm/sec and frequency of 132mm. First, the simulation is conducted with the same condition as the test.
Technical Paper

A Study for Fuel Economy Improvement on Applying New Technology for Torsional Vibration Reduction of Crank Pulley

2013-10-14
2013-01-2514
The method of Front End Auxiliary Drive (FEAD) system optimization can be divided into two ways. One is to use a mechanical device that decouples crank pulley from torsional vibration of crank shaft by using characteristics of spring. The other is to control belt tension through auto-tensioner in addition of alternator pulley device. Because the former case has more potential to reduce belt tension than the latter case, the development of mechanically decoupled crank pulley, despite of its difficulty of development, is getting popular among the industry. This paper characterizes latest crank pulley technologies, Crank Decoupler and Isolation Pulley, for torsional vibration reduction through functionality measurement result which composed of irregularity, slip, tensioner movement, belt span vibration, bearing hubload of idler and so on. Also it investigates their potential of belt tension reduction through steady state point fuel consumption test on dynamometer.
Technical Paper

A Study of Low-Friction Road Estimation using an Artificial Neural-Network

2018-04-03
2018-01-0811
Road friction estimation algorithms had been studied for many years because it is very important factor for safety control and fuel efficiency of vehicle. But traditional solutions are hard to adapt in automotive industry because their performance is not sufficient enough and expensive to implement. Therefore, this paper proposes a road friction estimation algorithm based on a trained artificial neural-network which is low cost and robust. The suggested method doesn’t need expensive additional sensors such as optical or lidar sensor, also it shows better performance in real car environment compared to other algorithms based on vehicle dynamics. In this paper, we would describe this algorithm in detail and analyze the test results evaluated in real road conditions.
Technical Paper

A Study of Suspension Tightening Torque on the R&H Performance of High Performance Vehicles

2018-04-03
2018-01-0577
Suspension is a system which operates dynamically according to road condition unlike other system statically mounted to the body. Especially this is more remarkable in high performance vehicle because there are more high inputs from road to suspension than normal vehicle. For this reason, the tightening torque of suspension system of high performance vehicle is more important than other systems and normal vehicle. To support the clamping between parts against force from road when cornering, optimized tightening torque is required to maximize R&H performance. For this optimization, it should be conducted first to comprehend how much performance effects on vehicle by tightening torque. This paper presents relationship between tightening torque of suspension parts hardware and R&H performance.
Technical Paper

A Study of the Auxiliary Belt Drive System for Actual Fuel Saving

2017-03-28
2017-01-0898
The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
Technical Paper

A Study on Optimization of the Multi-function Drive Plate for High Performance Engine

2007-04-16
2007-01-0798
The multi-function drive plate used for a high performance engine was developed by optimizing its structure, material and design features. To do so, the investigation of the load characteristics was done in order to increase FEA reliability. DFSS was utilized for optimizing the design features and defining the effect of geometric parameters on the durability. The durability of the optimized drive plate was verified by comparing the FEA and test results with other drive plates which were already verified. Finally, the real powertrain test was done to confirm its durability for a high performance engine.
Technical Paper

A Study on Overcoming Unavailable Backward Driving and a New Fail-Safe Strategy for R-Gearless (P)HEV System

2024-04-09
2024-01-2170
Recently, as part of the effort to enhance fuel efficiency and reduce costs for eco-friendly vehicles, the R-gearless system has been implemented in the TMED (P)HEV system. Due to the removal of the reverse gear, a distinct backward driving method needs to be developed, allowing the Electronic Motor (e-Motor) system to facilitate backward movement in the TMED (P)HEV system. However, the capability of backward driving with the e-Motor is limited because of partial failure in the high-voltage system of an R-gearless system. Thus, we demonstrate that it is possible to improve backward driving problems by applying a new fail-safe strategy. In the event of a high-voltage battery system failure, backward driving can be achieved using the e-Motor with constant voltage control by the Hybrid Starter Generator (HSG), as proposed in this study.
Technical Paper

A Study on the Design and Development of an Integrated 48V Motor with Motorized Internal Combustion Engine

2020-04-14
2020-01-0446
The electrification of the internal combustion engine is an important subject of future automotive technology. By using a motorized internal combustion engine, it is possible to recover waste energy by regeneration technology and to reduce various losses that deteriorate the efficiency of the internal combustion Engine. This paper summarizes the results of the development of an engine-integrated motor that can be applied to a 48V mild hybrid system for motorization of an internal combustion engine. Like the 48V MHSG-mounted mild hybrid system designed to replace the generator in the auxiliary belt system, the motorized internal combustion engine is designed with the scalability as the top priority to minimize the additional space for the vehicle and to mount the same engine in various models.
Technical Paper

A Study on the Method to Manage the Weight and Cost of a Vehicle by Adjusting the Parameters of Styling Profile

2018-04-03
2018-01-1025
Since the fuel efficiency of vehicle has become one of the big issues due to environmental pollution problems, many studies have been conducted on various methods such as improving powertrain performance and aerodynamic performance, reducing the weight of the vehicle and so on. There have been many new attempts to reduce weight but mostly about improving material property. In the case of vehicles sharing the same platform, the weight and cost of vehicle are mainly changed by the exterior styling. But, there is no solution to control the exterior styling in terms of the weight and cost of vehicle, yet. The purpose of this study is to find the way to save the weight and cost of vehicle while achieving the various performance and requirements of vehicle (safety, aerodynamics, driver’s visibility and so on) from exterior styling point of view. We focused on the weight difference of the vehicles that shared the platform and were same overall dimensions.
Journal Article

A Study on the Role of TRIZ in DFSS

2012-04-16
2012-01-0068
The Design For Six Sigma (DFSS) process consists of four phases, identification & definition of opportunity, concept development, design optimization, and design verification. In the phase of concept development, TRIZ (Russian acronym for Theory of Inventive Problem Solving) is useful for creating new ideas from the present ideas, which includes the trimming strategy, the antidote strategy, and the picket fence strategy. In this paper, systems of a vehicle such as Variable Compression Ratio (VCR) engine, windshield wiper blade, and Continuously Variable Valve Actuation (CVVA) of engine, are selected and new concepts for each system are created by applying the previously mentioned three strategies. FMEA (Failure Mode and Effects Analysis), the latter part in the phase of concept development in DFSS, is conducted for newly generated concepts of systems that are mentioned above. As a result of FMEA, it is found that the wind lift of the wiper blade can be a serious problem.
Technical Paper

AI-based EV Range Prediction with Personalization in the Vast Vehicle Data

2024-04-09
2024-01-2868
It is an important factor in electric vehicles to show customers how much they can drive with the energy of the remaining battery. If the remaining mileage is not accurate, electric vehicle drivers will have no choice but have to feel anxious about the mileage. Additionally, the potential customers have range anxiety when they consider Electric Vehicles. If the remaining mileage to drive is wrong, drivers may not be able to get to the charging station and may not be able to drive because the battery runs out. It is important to show the remaining available driving range exactly for drivers. The previous study proposed an advanced model by predicting the remaining mileage based on actual driving data and based on reflecting the pattern of customers who drive regularly. The Bayesian linear regression model was right model in previous study.
Technical Paper

An Experimental Study on Camshaft Impact Noise by Dynamic Coupling of Valve Train and Chain System

2024-04-09
2024-01-2827
To improve the fuel efficiency and satisfy the strict emission regulations, the development of internal combustion engine gets more complicated in both hardware and software perspectives, and the margins for durability and NVH quality become narrower, which could result in poor NVH robustness in harsh engine operating conditions. In this paper, we investigate experimentally the camshaft impact noise mechanism relating the valve train and timing chain forces to detailed motion of the camshaft and the chain tensioner. After the initial investigation of identifying the impact timings and specific engine operating points when the noise occurs, the camshaft orbital motion inside of the sliding bearing is measured and visualized with the proximity sensors with calibration after sensor mounting, in addition to the chain tensioner movements.
Technical Paper

An Improvement Research of Under-floor of Midsize Sedan-Focusing on 2010 New YF Sonata Development Examples-

2011-04-12
2011-01-0772
Hyundai Kia Motors started developing the under-floor of YF sonata, the base platform for mid-to-large size sedans, in order to reduce weight and improve body performance. For local dynamic rigidity, there are design improvement and additional support structures at suspension mounting area. The strength at the joint where longitudinal and transverse members meet is increased to improve the overall body stiffness, and also the riding comfort and handling. Impact performance and safety is also improved by straightening the major structural members and strengthening the joint areas, efficiently absorbing and inducing the impact energy through load paths. As the body of a vehicle is the constitution of numerous parts, increased strength at the joints and major structural members with more linear profiles have played crucial roles in the improvement in overall body performance.
Journal Article

Analysis of Formaldehyde Scavenger and Its Reaction Products in POM Using Mass Spectrometry

2021-04-06
2021-01-0360
To meet the indoor air quality guideline of newly manufactured vehicles in Korea, China, and other countries, low formaldehyde grade POM (Polyoxymethylene) is used for interior parts essentially. In this paper, formaldehyde scavengers from of 2 commercial low formaldehyde grade POM pellets were identified by LC-MS (Liquid chromatograph-Mass spectrometer) as sebacic dihydrazide and dodecanedioic dihydrazide respectively. The reaction products between formaldehyde and formaldehyde scavengers were also detected, which were converted from hydrazide to hydrazone. So, this kind of additive would be gradually consumed by repetitive molding process or exposure to heat according to formaldehyde emission increase. We are expecting to apply this analytical method and result for quality control and benchmark of low formaldehyde grade POM.
Technical Paper

Body Cross-Sectional Stiffness Criteria for the Optimal Development of the BIW Weight and Torsional Stiffness

2021-04-06
2021-01-0797
Body-in-white plays a key role in protecting passengers in the event of collision between vehicles, and also endures external forces during cornering in a vehicle. Stiffness of body-in-white is the basic characteristic of a car body, and it is closely related to the full-vehicle-level performance such as body durability, ride and handling, etc. There have been many attempts to correlate body stiffness to full-vehicle-level performance, and studying the relationship between torsional body stiffness and durability has been the popular topic among others. In general, it is believed to be true that bodies with high torsional stiffness exhibit good durability performance, and in many cases this assumption seems to be verified. However, not all cases are true to this assumption. In this paper, relationship between torsional body stiffness and body durability has been closely studied.
Technical Paper

Brake Pad Wear Monitor using MOC (Motor on Caliper) EPB ECU

2022-09-19
2022-01-1167
With the spread of new trends such as autonomous driving and vehicle subscription service, drivers may pay less attention to the maintenance of the vehicle. Brake pads being safety critical components, the wear condition of all service brakes is required by regulation to be indicated by either acoustic of optical devices or a means of visually checking the degree of brake lining wear [1]. Current application of the wear indicator in the market uses either sound generating metal strip or wire harness based pad wear sensor. The former is not effective in generating clear alarm to the driver, and the latter is not cost effective, and there is a need for more effective and low cost solution. In this paper, a pad wear monitoring system using MOC(Motor On Caliper) EPB(Electric Parking Brake) ECU is proposed. An MOC EPB is equipped with a motor, geartrain and an ECU. The motor current when applying the parking brake is influenced by the mechanical load at the brake pad side of the system.
X