Refine Your Search

Topic

Author

Search Results

Technical Paper

ARAI Experiences on Conversion of Petrol (Gasoline) Engine Vehicles to CNG Operation

1995-02-01
950403
Two carburetted passenger cars of different makes, converted for CNG (Compressed Natural Gas) operation (in dual mode) and optimised by ARAI (The Automotive Research Association of India, Pune, India), were tested for vehicular performance. The respective engines were also mapped for performance, energy consumption and emission. The power loss in CNG mode was 7% & 15% and torque reduction was 21% & 15% in respective engines. There is considerable improvement in thermal efficiency and reduction of emission in the entire operating range. The vehicle performance on Chassis Dynamometer shows similar results. The second engine was also tested with a ceramic catalytic converter which gave 93% reduction in CO and 50% reduction in HC in major portion of operating range. 1100 CC car was also tested on the test track. Optimisation work included installation of ARAI mixer design.
Technical Paper

Acoustic Enclosure Optimization for a Higher Capacity Diesel Generator Set Using Statistical Energy Analysis (SEA) Based Approach

2017-01-10
2017-26-0188
Diesel powered electric generators are used in a variety of applications, such as emergency back-up power, temporary primary power at industrial facilities, etc. As regulatory and customer requirements demand quieter designs, special attention is given to the design of acoustic enclosures to balance the need of noise control with other performance criteria like ventilation and physical protection. In the present work, Statistical Energy Analysis (SEA) approach augmented by experimental inputs is used to carry out Vibro-acoustic analysis of an enclosure for higher capacity Diesel generator set. The exterior sound radiated from an enclosed generator is predicted and further enclosure is optimized for an improved sound-suppression. The airborne sources such as engine, alternator, radiator fan and exhaust are modelled explicitly using experimental noise source characterization. Structure borne inputs are also captured in the test for improving modelling accuracy.
Technical Paper

Aerodynamic Analysis of Electric Passenger Car Using Wind Turbine Concept at Front End

2019-11-21
2019-28-2396
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. This space can be utilized to capture the wind energy and generate electricity. Based on this, the objective of this work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. Initially the aerodynamic analysis of a basic electric car model is performed and further simulated using wind turbines and aerodynamic add-on-devices. The simulation is carried-out using ANSYS Fluent tool. Based on the simulation result, scaled down optimized model is fabricated and tested in wind tunnel for validation. The result shows reduction of drag coefficient by 5.9%.
Technical Paper

Aerodynamic Analysis of Passenger Car with Luggage Carrier (Roof Rack)

2019-01-09
2019-26-0067
Any change is vehicle exterior design, affects the aerodynamics characteristic. Generally different types of roof racks are attached on passenger vehicles to carry luggage which affects aerodynamic drag. The objective of this work is to perform aerodynamic analysis of ground vehicle with roof rack to investigate the change in drag coefficient. First, the aerodynamic analysis of a baseline passenger car model is performed with and without generic benchmarked roof rack at 100 kmph. Further analysis is carried out with different new designs of roof racks. Based on simulation result, a scaled down prototype model is fabricated and validated by using a wind tunnel test for optimum suitable case. The modelling of the vehicle is done in CATIA tool and simulation is carried out by using ANSYS Fluent.
Technical Paper

Aerodynamic Analysis of a Passenger Car to Reduce Drag Using Active Grill Shutter and Active Air Dam

2019-11-21
2019-28-2408
Active aerodynamics can be defined as the concept of reducing drag by making real-time changes to certain devices such that it modifies the airflow around a vehicle. Using such devices also have the added advantages of improving ergonomics and performance along with aesthetics. A significant reduction in fuel consumption can also be seen when using such devices. The objective of this work is to reduce drag acting on a passenger car using the concept of active aerodynamics with grill shutters and air dams. First, analysis has been carried out on a baseline passenger car and further simulated using active grill shutters and air dams for vehicle speed ranging from 60 kmph to 120 kmph, with each active device open from 0° to 90°. The optimized model is then validated for a scaled down prototype in a wind tunnel at 80kmph. Vehicle has been modelled using SolidWorks tool and the simulation has been carried out using ANSYS Fluent.
Technical Paper

Aluminium for Curbing GHG Emissions in Indian Public Transport Buses

2020-04-14
2020-01-1050
Major cause of air pollution in the world is due to burning of fossil fuels for transport application; around 23% GHG emissions are produced due to transport sector. Likewise, the major cause of air pollution in Indian cities is also due to transport sector. Marginal improvement in the fuel economy provide profound impact on surrounding air quality and lightweighting of vehicle mass is the key factor in improving fuel economy. The paper describes robust and integrated approach used for design and development of lightweight bus structures for Indian city bus applications. An attempt is made to demonstrate the use of environment friendly material like aluminium in development of lightweight superstrutured city buses for India. Exercise involved design, development and prototype manufacturing of 12m Low Entry and 12m Semi Low Floor (SLF) bus models.
Technical Paper

Biodiesel from Microalgae

2017-01-10
2017-26-0077
Microalgae as feedstock are the potential third generation biofuels. Microalgae are photosynthetic microorganism which requires light, carbon-di-oxide, nitrogen, phosphorous, and potassium for growth and to produce lipids, proteins and carbohydrates in large amounts over short a periods of time. The production of biofuels from microalgal is a viable alternative due to their easy adaptability to growth conditions, possibility of growing biomass either in fresh or marine waters. Hence the current project was designed to elucidate the biodiesel producing ability of blue-green algae such as Spirulina platensis and Green algae Chlorella vulgaris. The selected algae were cultivated in suitable growth media such as modified Zarrouke medium and bold basal medium, respectively. The Spirulina platensis and Chlorella vulgaris were mass cultured for 8 days then harvested using 50 micron nylon filters and dried in sunlight to obtain dry biomass.
Technical Paper

Chemical Profiling of Exhaust Particulate Matter from Indian In-Service Vehicles

2021-09-22
2021-26-0192
Particulate matter is one of the major pollutant responsible for deteriorating air quality, particularly in urban centers. Information on contributing sources with the share from different sources is a first and one of the important steps in controlling pollution. Diverse sources, anthropogenic as well as natural, like industries, transport, domestic burning, construction, wind-blown dust, road dust contribute to particulate matter pollution. Receptor modeling is a scientific method which is utilized for assessment of the contribution of various sources based on chemical characteristics of particulate matter sources and ambient air particulate matter. Representative data of fractions of various chemical species in the particulate matter from the different sources i.e. source fingerprint is an essential input for the receptor modeling approach.
Technical Paper

Comparative Analysis of Electromagnetic Radiated Emission for Electric Powertrain and Conventional Spark Ignition (SI) Powertrain

2024-01-16
2024-26-0133
Due to the transformation of the automotive industry from conventional vehicles to electric vehicles, new challenges have emerged concerning Electromagnetic Compatibility. Though the Radiated Emission limits in global regulation are the same for both types of powertrains of vehicles, however, due to the phenomena of conversion of high voltage to low voltage, rapid charging/discharging, and different components involved in electric powertrain, the Radiated Emission from electric vehicles give a strikingly different trend which is challenging to combat. When compared with the conventional Spark Ignition vehicle, many other electronic components of the electric vehicle stay in the mode of Power ON while in the “Ignition ON” steady state. This resulted in us observing a significant shift in the amplitude and frequency throughout the frequency band of Radiated Emission measurement.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean CI Engines, Part I: Combustion System Optimization

2024-01-16
2024-26-0037
Following global trends of increasingly stringent greenhouse gas (GHG) and criteria pollutant regulations, India will likely introduce within the next decade equivalent Bharat Stage (BS) regulations for Diesel engines requiring simultaneous reduction in CO2 emissions and up to 90% reduction in NOx emission from current BS-VI levels. Consequently, automakers are likely to face tremendous challenges in meeting such emission reduction requirements while maintaining performance and vehicle total cost of ownership (TCO), especially in the Indian market, which has experienced significant tightening of emission regulation during the past decade. Therefore, it is conceivable that cost effective approaches for improving existing diesel engines platforms for future regulations would be of high strategic importance for automakers.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean Compression-Ignition Engines, Part II: Air-Handling and Exhaust Aftertreatment

2024-01-16
2024-26-0044
Currently, on-road transport contributes nearly 12% of India’s total energy related carbon dioxide (CO2) emissions that are expected to be doubled by 2040. Following the global trends of increasingly stringent greenhouse gas emissions (GHG) and criteria emissions, India will likely impose equivalent Bharat Stage (BS) regulations mandating simultaneous reduction in CO2 emissions and nearly 90% lower nitrogen oxides (NOx) from the current BS-VI levels. Consequently, Indian automakers would likely face tremendous challenges in meeting such emission reduction requirements while balancing performance and the total cost of ownership (TCO) trade-offs. Therefore, it is conceivable that cost-effective system improvements for the existing internal combustion engine (ICE) powertrains would be of high strategic importance for the automakers.
Technical Paper

Design / Analysis and Development of Cylinder Head for High Performance 3 Cylinder CRDi Euro-V Diesel Engine for a High Combustion Pressure of 200 Bar

2010-10-05
2010-01-1975
This work is a part of program on “Development of High Performance DI, 3 Cylinder CRDI Diesel Engine to meet Euro-IV/V Emission Norms focused on automotive passenger car application purpose. This is a 3 Cylinder, TCIC engine designed for combustion pressure of 160 bar max for first stage which is being upgraded to 200 bar max in the second stage. Cylinder Head design is a part of complicated configuration whose construction and principal dimensions are dependent on the size of inlet and exhaust valves, fuel injectors positioning and mounting, port layout and swirl and shape of combustion chambers. The cylinder head of a direct-injection diesel engine has to perform many functions. It has to bring charge air to the cylinder and exhaust gas from the cylinder, with minimum pumping loss and required swirl and other properties of charge motion.
Technical Paper

Design and Development of 3- Cylinder: 75 kW/liter, High Power Density Diesel Engine for Passenger Car Application to Meet Euro IV/V Emission Norms

2011-01-19
2011-26-0033
To meet the latest trends in internal combustion engines pertaining efficiency, emissions and durability, downsizing of the engine has become the key focus area. This paper describes about a robust, reliable and an integrated approach used in design and development of state of art high power density/ high speed engine developed from the concept, which can be adopted for passenger car and LCV application. A three-cylinder, 1.5 liter displacement diesel engine, fully balanced is being designed with an objective to produce 115kW @ 4200 rpm, delivering a specific power output over 75 kW/liter, which is at par with a contemporary class of specification in it. In the first stage, a derated version of 75 kW (50 kW/liter) with Euro-IV and Euro-V specifications is targeted aiming at smaller car and light motor vehicle segment and a prime-mover for hybrid application.
Technical Paper

Design and Development of E-axle as a Retro and OE Fitment Solution for Light Commercial Vehicles Ranging from 1.5 to 5 Ton GVW

2024-01-16
2024-26-0119
The Light commercial vehicle (LCV) is primarily used for the last mile delivery and it hold the volume share of around 61% in the commercial vehicle segment. The last mile delivery services have seen a massive surge after the CoVID 19 pandemic resulting is the increase sale of LCV in last few years and is expected to grow further by 8-11% in the coming years. However, city logistic is also responsible for most pollution and noise in the city. Hence, policymakers are aiming to reduce carbon footprint by promoting the use of Electric vehicle by providing incentive to automakers though schemes like FAME I and FAME II. In order to effectively reduce the carbon footprint within city it is important to increase the use of new electric vehicle and convert the old polluting vehicles to electric. Hence, a retro fitment solution for converting used LCV to electric can help in reducing emission as well as noise pollution. Later the same solution can be offered as OE fitment solution.
Technical Paper

Design and Development of High Performance Diesel Engine Block for High Power Density Engines with an Integrated Approach

2010-10-05
2010-01-1973
This work is a part of program on “Development of High Power Density DI, Diesel Engine to Meet US EPA - Tier III Emission norms for off highway and Genset application purpose. This is a 4 Cylinder, TCIC engine delivering 165 Hp @ 2500 rpm. BMEP at max torque comes to be 18 bar giving max cylinder firing pressure of 160 bar. Engine block is a most vital component which has to serve various functions all together. Also design of block for such a high BMEP levels, demands to give a different design strategy required for development of High Performance Engines. In order to reduce overall production cost, several constraints are imposed on design of new block. Design of block is carried out within several design, assembly and manufacturing constraints such as maintain a specific cylinder centre distance, integral oil cooler in the engine block, re-location of camshaft and FIE positions, incorporation of various accessories viz. steering pump, Air Compressor etc.
Technical Paper

Design and Development of Radiator Fan for Automotive Application

2012-04-16
2012-01-0555
A methodology for design and development of radiator cooling fan is developed with an objective to improve underhood thermal management. For this purpose an Axial Fan Design Software has been developed which is based on Arbitrary Vortex Flow theory. The software is useful for obtaining initial blade design for the given basic functional requirements in terms of Airflow, Pressure Rise and Speed which defines the operating point of the fan. CFD analysis of the initial fan design is then carried out to predict the fan performance curve. Computation model resembles a fan set up in a wind tunnel. Further, Parametric Optimization is carried out using CFD to meet the functional requirements. A Rapid Prototype sample of the optimized fan design is manufactured and tested in a fan test rig made as per AMCA 210-99 standard to evaluate the fan performance curve and the power consumption.
Technical Paper

Design and Development of Tunable Exhaust Muffler for Race Car

2016-02-01
2016-28-0193
The Exhaust Noise is one of the major noise pollutants. It is well-known that for higher noise reduction, the engine has to bear high back pressure. For a race car, back-pressure plays a major role in engine's performance characteristics. For a given condition of engine rpm & load, conventional muffler has a fixed value of back-pressure and noise attenuation. Better acceleration requires low back-pressure, but the exhaust noise should also be less than the required (Norm) value (110 dBA). This contradicting condition is achieved here by using a ‘Butterfly Valve’ in this novel exhaust muffler. The butterfly valve assumes 2 positions i.e. fully open & fully closed. When the valve is fully closed, the noise reduction will be higher, but the back-pressure will also shoot up. When open, noise reduction will be less and so the back-pressure. So, when better performance is required, the valve is opened and back-pressure is reduced. The muffler is designed for a 4 cylinder 600 cc engine.
Technical Paper

Design and Development of a Retrofit Solution for Converting a Conventional LCV into Parallel Hybrid Electric Vehicle

2019-01-09
2019-26-0117
In today’s scenario, the emission norms are getting stringent day by day due to an increased level of pollution. The world is shifting towards low carbon footprint which made it necessary to adopt efficient technologies with fewer emissions. The hybridization of vehicles has resulted in improved efficiency with lower emissions which can fulfil the near future emission norms. Retrofitting of hybrid components into a conventional IC engine vehicle is so far the best way to achieve better performance both economically and technologically. This research is primarily focused on the design and development of a novel retrofit solution of P3x architecture for the light commercial vehicle. This retrofit solution is different from other hybrid solutions in terms of powertrain. It contains an innovative add-on powertrain along with the existing powertrain. This additional powertrain consists of a pair of helical gears followed by a chain and sprocket as a coupler for traction motor.
Technical Paper

Development of In-house Competency to Build Compact Gerotor Oil Pump for High Speed Diesel Engine Application

2013-11-27
2013-01-2738
Gerotor pump is a positive displacement pump unit which is widely used for lubrication in on-road and off-road engine applications. This paper is focused on Gerotor pump design competency established at ARAI comprising of design of inner and outer rotors, suction & delivery ports, optimizing inlet and outlet diameters & its position, development of methodology to calculate oil flow rate, volumetric efficiency, mechanical efficiency & slippage. The finalization of design is followed by CFD of Gerotor pump to optimize the pressure and flow pulsation. A trochoidal profile is used to design the inner and outer rotors and its conjugate profile are realized by a set of equations using a method based on the theory of gearing. Suction and delivery port is analytically designed based on the same design parameters of the trochoidal profile.
Technical Paper

Development of Indigenous Automated System to Evaluate Clutch Performance Under Real World Conditions

2017-01-10
2017-26-0320
Automotive clutches form the most important component in the drive line which acts both as torque transmitter and as a fuse. Testing clutches, in the vehicle assembly, poses certain limitations. In this context the automotive clutch, as a component, needs to be evaluated to determine various performance parameters like wear, load loss, slipping torque, slipping time etc. to meet desired design, performance and durability requirements. It is very important to simulate engine and vehicle conditions in terms of operating environment, speed and load accurately while evaluating above parameters. This creates lot of challenges to design and develop a test rig capable of evaluating complete clutch performance. Very limited options are available for such test rigs worldwide. In India, no manufacturer provides such indigenous test rigs. Developing an indigenous, cost effective clutch test rig was the need of the hour.
X