Refine Your Search

Topic

Author

Search Results

Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Least-Cost Method for Prioritizing Battery Research

1983-02-01
830221
A methodology has been developed for identifying the combination of battery characteristics which lead to least-cost electric vehicles. Battery interrelationships include specific power vs, specific energy, peak power vs. specific energy and DOD, cycle life vs. DOD, cost vs. specific energy and peak power, and volumetric and battery size effects. The method is illustrated for the “second car” mission assuming lead/acid batteries. Reductions in life-cycle costs associated with future battery research breakthroughs are estimated using a sensitivity technique. A research prioritization system is described.
Technical Paper

A PEV Emulation Approach to Development and Validation of Grid Friendly Optimized Automated Load Control Vehicle Charging Systems

2018-04-03
2018-01-0409
There are many challenges in implementing grid aware plug-in electric vehicle (PEV) charging systems with local load control. New opportunities for innovative load control were created as a result of changes to the 2014 National Electric Code (NEC) about automatic load control definitions for EV charging infrastructure. Stakeholders in optimized dispatch of EV charging assets include the end users (EV drivers), site owner/operators, facility managers and utilities. NEC definition changes allow for ‘over subscription’ of more potential EV charging station load than can be continuously supported if the total load at any time is within the supply system safety limit. Local load control can be implemented via compact submeter(s) with locally hosted control algorithms using direct communication to the managed electric vehicle supply equipment (EVSE).
Journal Article

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods

2010-04-12
2010-01-1266
Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple “cold” start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts.
Technical Paper

A Real-Time Intelligent Speed Optimization Planner Using Reinforcement Learning

2021-04-06
2021-01-0434
As connectivity and sensing technologies become more mature, automated vehicles can predict future driving situations and utilize this information to drive more energy-efficiently than human-driven vehicles. However, future information beyond the limited connectivity and sensing range is difficult to predict and utilize, limiting the energy-saving potential of energy-efficient driving. Thus, we combine a conventional speed optimization planner, developed in our previous work, and reinforcement learning to propose a real-time intelligent speed optimization planner for connected and automated vehicles. We briefly summarize the conventional speed optimization planner with limited information, based on closed-form energy-optimal solutions, and present its multiple parameters that determine reference speed trajectories.
Technical Paper

Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle

2015-04-14
2015-01-0832
For several years there has been a great deal of effort made in researching ways to run a compression ignition engine with simultaneously high efficiency and low emissions. Recently much of this focus has been dedicated to using gasoline-like fuels that are more volatile and less reactive than conventional diesel fuel to allow the combustion to be more premixed. One of the key challenges to using fuels with such properties in a compression ignition engine is stable engine operation at low loads. This paper provides an analysis of how stable gasoline compression ignition (GCI) engine operation was achieved down to idle speed and load on a multi-cylinder compression ignition engine using only 87 anti-knock index (AKI) gasoline. The variables explored to extend stable engine operation to idle included: uncooled exhaust gas recirculation (EGR), injection timing, injection pressure, and injector nozzle geometry.
Technical Paper

Advanced Automatic Transmission Model Validation Using Dynamometer Test Data

2014-04-01
2014-01-1778
As a result of increasingly stringent regulations and higher customer expectations, auto manufacturers have been considering numerous technology options to improve vehicle fuel economy. Transmissions have been shown to be one of the most cost-effective technologies for improving fuel economy. Over the past couple of years, transmissions have significantly evolved and impacted both performance and fuel efficiency. This study validates the shifting control of advanced automatic transmission technologies in vehicle systems by using Argonne National Laboratory's model-based vehicle simulation tool, Autonomie. Different midsize vehicles, including several with automatic transmission (6-speeds, 7-speeds, and 8-speeds), were tested at Argonne's Advanced Powertrain Research Facility (APRF). For the vehicles, a novel process was used to import test data.
Technical Paper

Ambient Temperature (20°F, 72°F and 95°F) Impact on Fuel and Energy Consumption for Several Conventional Vehicles, Hybrid and Plug-In Hybrid Electric Vehicles and Battery Electric Vehicle

2013-04-08
2013-01-1462
This paper determines the impact of ambient temperature on energy consumption of a variety of vehicles in the laboratory. Several conventional vehicles, several hybrid electric vehicles, a plug-in hybrid electric vehicle and a battery electric vehicle were tested for fuel and energy consumption under test cell conditions of 20°F, 72°F and 95°F with 850 W/m₂ of emulated radiant solar energy on the UDDS, HWFET and US06 drive cycles. At 20°F, the energy consumption increase compared to 72°F ranges from 2% to 100%. The largest increases in energy consumption occur during a cold start, when the powertrain losses are highest, but once the powertrains reach their operating temperatures, the energy consumption increases are decreased. At 95°F, the energy consumption increase ranges from 2% to 70%, and these increases are due to the extra energy required to run the air-conditioning system to maintain 72°F cabin temperatures.
Technical Paper

An Assessment of Electric Vehicle Life Cycle Costs to Consumers

1998-11-30
982182
A methodology for evaluating life cycle cost of electric vehicles (EVs) to their buyers is presented. The methodology is based on an analysis of conventional vehicle costs, costs of drivetrain and auxiliary components unique to EVs, and battery costs. The conventional vehicle's costs are allocated to such subsystems as body, chassis, and powertrain. In electric vehicles, an electric drive is substituted for the conventional powertrain. The current status of the electric drive components and battery costs is evaluated. Battery costs are estimated by evaluating the material requirements and production costs at different production levels; battery costs are also collected from other sources. Costs of auxiliary components, such as those for heating and cooling the passenger compartment, are also estimated. Here, the methodology is applied to two vehicle types: subcompact car and minivan.
Technical Paper

Analysis of Fast Charging Station Network for Electrified Ride-Hailing Services

2018-04-03
2018-01-0667
Today’s electric vehicle (EV) owners charge their vehicles mostly at home and seldom use public direct current fast charger (DCFCs), reducing the need for a large deployment of DCFCs for private EV owners. However, due to the emerging interest among transportation network companies to operate EVs in their fleet, there is great potential for DCFCs to be highly utilized and become economically feasible in the future. This paper describes a heuristic algorithm to emulate operation of EVs within a hypothetical transportation network company fleet using a large global positioning system data set from Columbus, Ohio. DCFC requirements supporting operation of EVs are estimated using the Electric Vehicle Infrastructure Projection tool. Operation and installation costs were estimated using real-world data to assess the economic feasibility of the recommended fast charging stations.
Journal Article

Analysis of Input Power, Energy Availability, and Efficiency during Deceleration for X-EV Vehicles

2013-04-08
2013-01-1473
The recovery of braking energy through regenerative braking is a key enabler for the improved efficiency of Hybrid Electric Vehicles, Plug-in Hybrid Electric, and Battery Electric Vehicles (HEV, PHEV, BEV). However, this energy is often treated in a simplified fashion, frequently using an overall regeneration efficiency term, ξrg [1], which is then applied to the total available braking energy of a given drive-cycle. In addition to the ability to recapture braking energy typically lost during vehicle deceleration, hybrid and plug-in hybrid vehicles also allow for reduced or zero engine fueling during vehicle decelerations. While regenerative braking is often discussed as an enabler for improved fuel economy, reduced fueling is also an important component of a hybrid vehicle's ability to improve overall fuel economy.
Technical Paper

Analyzing the Expense: Cost Modeling for State-of-the-Art Electric Vehicle Battery Packs

2024-04-09
2024-01-2202
The Battery Performance and Cost Model (BatPaC), developed by Argonne National Laboratory, is a versatile tool designed for lithium-ion battery (LIB) pack engineering. It accommodates user-defined specifications, generating detailed bill-of-materials calculations and insights into cell dimensions and pack characteristics. Pre-loaded with default data sets, BatPaC aids in estimating production costs for battery packs produced at scale (5 to 50 GWh annually). Acknowledging inherent uncertainties in parameters, the tool remains accessible and valuable for designers and engineers. BatPaC plays a crucial role in National Highway Transportation Traffic Safety Administration (NHTSA) regulatory assessments, providing estimated battery pack manufacturing costs and weight metrics for electric vehicles. Integrated with Argonne's Autonomie simulations, BatPaC streamlines large-scale processes, replacing traditional models with lookup tables.
Technical Paper

Analyzing the Uncertainty in the Fuel Economy Prediction for the EPA MOVES Binning Methodology

2007-04-16
2007-01-0280
Developed by the U.S. Environmental Protection Agency (EPA), the Multi-scale mOtor Vehicle Emission Simulator (MOVES) is used to estimate inventories and projections through 2050 at the county or national level for energy consumption, nitrous oxide (N2O), and methane (CH4) from highway vehicles. To simulate a large number of vehicles and fleets on numerous driving cycles, EPA developed a binning technique characterizing the energy rate for varying Vehicle Specific Power (VSP) under predefined vehicle speed ranges. The methodology is based upon the assumption that the vehicle behaves the same way for a predefined vehicle speed and power demand. While this has been validated for conventional vehicles, it has not been for advanced vehicle powertrains, including hybrid electric vehicles (HEVs) where the engine can be ON or OFF depending upon the battery State-of-Charge (SOC).
Technical Paper

Assessing and Modeling Direct Hydrogen and Gasoline Reforming Fuel Cell Vehicles and Their Cold-Start Performance

2003-06-23
2003-01-2252
This paper analyzes fuel economy benefits of direct hydrogen and gasoline reformer fuel cell vehicles, with special focus on cold-start impacts on these fuel cell based vehicles. Comparing several existing influential studies reveals that the most probable estimates from these studies differ greatly on the implied benefits of both types of fuel cell vehicles at the tank-to-wheel level (vehicle-powertrain efficiency and/or specific power), leading to great uncertainties in estimating well-to-wheel fuel energy and/or greenhouse gas (GHG) emission reduction potentials. This paper first addresses methodological issues to influence the outcome of these analyses. With one exception, we find that these studies consistently ignore cold-start and warm-up issues, which play important roles in determining both energy penalties and start-up time of fuel cell vehicles. To better understand cold-start and warm-up behavior, this paper examines approaches and results based on two available U.S.
Journal Article

Assessment of Large-Eddy Simulations of Turbulent Round Jets Using Low-Order Numerical Schemes

2017-03-28
2017-01-0575
The basic idea behind large-eddy simulation (LES) is to accurately resolve the large energy-containing scales and to use subgrid-scale (SGS) models for the smaller scales. The accuracy of LES can be significantly impacted by the numerical discretization schemes and the choice of the SGS model. This work investigates the accuracy of low-order LES codes in the simulation of a turbulent round jet which is representative of fuel jets in engines. The turbulent jet studied is isothermal with a Reynolds number of 6800. It is simulated using Converge, which is second-order accurate in space and first-order in time, and FLEDS, developed at Purdue University, which is sixth-order accurate in space and fourth-order in time. The high-order code requires the resolution of acoustic time-scales and hence is approximately 10 times more expensive than the low-order code.
Journal Article

Automated Model Initialization Using Test Data

2017-03-28
2017-01-1144
Building a vehicle model with sufficient accuracy for fuel economy analysis is a time-consuming process, even with the modern-day simulation tools. Obtaining the right kind of data for modeling a vehicle can itself be challenging, given that while OEMs advertise the power and torque capability of their engines, the efficiency data for the components or the control algorithms are not usually made available for independent verification. The U.S. Department of Energy (DOE) funds the testing of vehicles at Argonne National Laboratory, and the test data are publicly available. Argonne is also the premier DOE laboratory for the modeling and simulation of vehicles. By combining the resources and expertise with available data, a process has been created to automatically develop a model for any conventional vehicle that is tested at Argonne. This paper explains the process of analyzing the publicly available test data and computing the parameters of various components from the analysis.
Technical Paper

Axial Flux Variable Gap Motor: Application in Vehicle Systems

2002-03-04
2002-01-1088
Alternative electric motor geometry with potentially increased efficiency is being considered for hybrid electric vehicle applications. An axial flux motor with a dynamically adjustable air gap (i.e., mechanical field weakening) has been tested, analyzed, and modeled for use in a vehicle simulation tool at Argonne National Laboratory. The advantage of adjusting the flux is that the motor torque-speed characteristics can better match the vehicle load. The challenge in implementing an electric machine with these qualities is to develop a control strategy that takes advantage of the available efficiency improvements without using excessive energy to mechanically adjust the air gap and thus reduce the potential energy savings. Motor efficiency was mapped in terms of speed, torque, supply voltage, and rotor-to-stator air gap.
Technical Paper

Breaking Down Technology Barriers for Advanced Vehicles: The Graduate Automotive Technology Education (GATE) Program

2000-04-02
2000-01-1595
The U.S. Department of Energy (DOE) Office of Advanced Automotive Technologies (OAAT), in partnership with industry, is developing transportation technologies that will improve the energy efficiency of our transportation system. Most OAAT programs are focused exclusively on technology development. However, the twin goals of developing innovative technologies and transferring them to industry led OAAT to realize the growing need for people trained in non-traditional, emerging technologies. The Graduate Automotive Technology Education (GATE) program combines graduate-level education with technology development and transfer by training a new generation of automotive engineers in critical multi-disciplinary technologies, by fostering cooperative research in those technologies, and by transferring those technologies directly to industrial organizations.
Video

Codes and Standards – Global Harmonization

2011-11-18
Career development is no longer something you focus on in your twenties and are set for life, it is ongoing and constant. New technologies, globalization and the world-wide competition for jobs demand that we continue to grow our skills and knowledge throughout our life. This session will provide you with tools to help you meet this demand as an engineering professional. Participants will create a personal mission statement and set career goals, identify the best way to research new opportunities and build their network while also crafting a personal brand with consistent messaging. Organizer Martha Schanno, SAE International Panelist Caryn Mateer, Transformational Leaders Intl. Kathleen Riley, Transformational Leaders Intl.
Technical Paper

Comparing Apples to Apples: Well-to-Wheel Analysis of Current ICE and Fuel Cell Vehicle Technologies

2004-03-08
2004-01-1015
Because of their high efficiency and low emissions, fuel-cell vehicles are undergoing extensive research and development. When considering the introduction of advanced vehicles, a complete well-to-wheel evaluation must be performed to determine the potential impact of a technology on carbon dioxide and Green House Gases (GHGs) emissions. Several modeling tools developed by Argonne National Laboratory (ANL) were used to evaluate the impact of advanced powertrain configurations. The Powertrain System Analysis Toolkit (PSAT) transient vehicle simulation software was used with a variety of fuel cell system models derived from the General Computational Toolkit (GCtool) for pump-to-wheel (PTW) analysis, and GREET (Green house gases, Regulated Emissions and Energy use in Transportation) was used for well-to-pump (WTP) analysis. This paper compares advanced propulsion technologies on a well-to-wheel energy basis by using current technology for conventional, hybrid and fuel cell technologies.
X