Refine Your Search

Topic

Author

Search Results

Technical Paper

A PEV Emulation Approach to Development and Validation of Grid Friendly Optimized Automated Load Control Vehicle Charging Systems

2018-04-03
2018-01-0409
There are many challenges in implementing grid aware plug-in electric vehicle (PEV) charging systems with local load control. New opportunities for innovative load control were created as a result of changes to the 2014 National Electric Code (NEC) about automatic load control definitions for EV charging infrastructure. Stakeholders in optimized dispatch of EV charging assets include the end users (EV drivers), site owner/operators, facility managers and utilities. NEC definition changes allow for ‘over subscription’ of more potential EV charging station load than can be continuously supported if the total load at any time is within the supply system safety limit. Local load control can be implemented via compact submeter(s) with locally hosted control algorithms using direct communication to the managed electric vehicle supply equipment (EVSE).
Technical Paper

A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers

2001-05-14
2001-01-2071
Road vehicles can expend a significant amount of energy in undesirable vertical motions that are induced by road bumps, and much of that is dissipated in conventional shock absorbers as they dampen the vertical motions. Presented in this paper are some of the results of a study aimed at determining the effectiveness of efficiently transforming that energy into electrical power by using optimally designed regenerative electromagnetic shock absorbers. In turn, the electrical power can be used to recharge batteries or other efficient energy storage devices (e.g., flywheels) rather than be dissipated. The results of the study are encouraging - they suggest that a significant amount of the vertical motion energy can be recovered and stored.
Technical Paper

Ambient Temperature (20°F, 72°F and 95°F) Impact on Fuel and Energy Consumption for Several Conventional Vehicles, Hybrid and Plug-In Hybrid Electric Vehicles and Battery Electric Vehicle

2013-04-08
2013-01-1462
This paper determines the impact of ambient temperature on energy consumption of a variety of vehicles in the laboratory. Several conventional vehicles, several hybrid electric vehicles, a plug-in hybrid electric vehicle and a battery electric vehicle were tested for fuel and energy consumption under test cell conditions of 20°F, 72°F and 95°F with 850 W/m₂ of emulated radiant solar energy on the UDDS, HWFET and US06 drive cycles. At 20°F, the energy consumption increase compared to 72°F ranges from 2% to 100%. The largest increases in energy consumption occur during a cold start, when the powertrain losses are highest, but once the powertrains reach their operating temperatures, the energy consumption increases are decreased. At 95°F, the energy consumption increase ranges from 2% to 70%, and these increases are due to the extra energy required to run the air-conditioning system to maintain 72°F cabin temperatures.
Technical Paper

An Examination of Spray Stochastics in Single-Hole Diesel Injectors

2015-09-01
2015-01-1834
Recent advances in x-ray spray diagnostics at Argonne National Laboratory's Advanced Photon Source have made absorption measurements of individual spray events possible. A focused x-ray beam (5×6 μm) enables collection of data along a single line of sight in the flow field and these measurements have allowed the calculation of quantitative, shot-to-shot statistics for the projected mass of fuel sprays. Raster scanning though the spray generates a two-dimensional field of data, which is a path integrated representation of a three-dimensional flow. In a previous work, we investigated the shot-to-shot variation over 32 events by visualizing the ensemble standard deviations throughout a two dimensional mapping of the spray. In the current work, provide further analysis of the time to steady-state and steady-state spatial location of the fluctuating field via the transverse integrated fluctuations (TIF).
Technical Paper

Analytical Approach to Characterize the Effect of Engine Control Parameters and Fuel Properties on ACI Operation in a GDI Engine

2020-04-14
2020-01-1141
Advanced compression ignition (ACI) operation in gasoline direct injection (GDI) engines is a promising concept to reduce fuel consumption and emissions at part load conditions. However, combustion phasing control and the limited operating range in ACI mode are a perennial challenge. In this study the combined impact of fuel properties and engine control strategies in ACI operation are investigated. A design of experiments method was implemented using a three level orthogonal array to determine the sensitivity of engine control parameters on the engine load, combustion noise and stability under low load ACI operation for three RON 98 gasoline fuels, each exhibiting disparate chemical composition. Furthermore, the thermodynamic state of the compression histories was studied with the aid of the pressure-temperature framework.
Technical Paper

Automated Vehicle Perception Sensor Evaluation in Real-World Weather Conditions

2023-04-11
2023-01-0056
Perception in adverse weather conditions is one of the most prominent challenges for automated driving features. The sensors used for mid-to-long range perception most impacted by weather (i.e., camera and LiDAR) are susceptible to data degradation, causing potential system failures. This research series aims to better understand sensor data degradation characteristics in real-world, dynamic environmental conditions, focusing on adverse weather. To achieve this, a dataset containing LiDAR (Velodyne VLP-16) and camera (Mako G-507) data was gathered under static scenarios using a single vehicle target to quantify the sensor detection performance. The relative position between the sensors and the target vehicle varied longitudinally and laterally. The longitudinal position was varied from 10m to 175m at 25m increments and the lateral position was adjusted by moving the sensor set angle between 0 degrees (left position), 4.5 degrees (center position), and 9 degrees (right position).
Journal Article

Battery Charge Balance and Correction Issues in Hybrid Electric Vehicles for Individual Phases of Certification Dynamometer Driving Cycles as Used in EPA Fuel Economy Label Calculations

2012-04-16
2012-01-1006
This study undertakes an investigation of the effect of battery charge balance in hybrid electric vehicles (HEVs) on EPA fuel economy label values. EPA's updated method was fully implemented in 2011 and uses equations which weight the contributions of fuel consumption results from multiple dynamometer tests to synthesize city and highway estimates that reflect average U.S. driving patterns. For the US06 and UDDS cycles, the test results used in the computation come from individual phases within the overall certification driving cycles. This methodology causes additional complexities for hybrid vehicles, because although they are required to be charge-balanced over the course of a full drive cycle, they may have net charge or discharge within the individual phases. As a result, the fuel consumption value used in the label value calculation can be skewed.
Video

Beyond MPG: Characterizing and Conveying the Efficiency of Advanced Plug-In Vehicles 

2011-11-08
Research in plug in vehicles (PHEV and BEV) has of course been ongoing for decades, however now that these vehicles are finally being produced for a mass market an intense focus over the last few years has been given to proper evaluation techniques and standard information to effectively convey efficiency information to potential consumers. The first challenge is the development of suitable test procedures. Thanks to many contributions from SAE members, these test procedures have been developed for PHEVs (SAE J1711 now available) and are under development for BEVs (SAE J1634 available later this year). A bigger challenge, however, is taking the outputs of these test results and dealing with the issue of off-board electrical energy consumption in the context of decades-long consumer understanding of MPG as the chief figure of merit for vehicle efficiency.
Journal Article

Buckling Analysis of Uncertain Structures Using Imprecise Probability

2015-04-14
2015-01-0485
In order to ensure the safety of a structure, adequate strength for structural elements must be provided. Moreover, catastrophic deformations such as buckling must be prevented. Using the linear finite element method, deterministic buckling analysis is completed in two main steps. First, a static analysis is performed using an arbitrary ordinate applied loading pattern. Using the obtained element axial forces, the geometric stiffness of the structure is assembled. Second, an eigenvalue problem is performed between structure's elastic and geometric stiffness matrices, yielding the structure's critical buckling loads. However, these deterministic approaches do not consider uncertainty the structure's material and geometric properties. In this work, a new method for finite element based buckling analysis of a structure with uncertainty is developed. An imprecise probability formulation is used to quantify the uncertainty present in the mechanical characteristics of the structure.
Technical Paper

Clean and Cost-effective Dry Boundary Lubricants for Aluminum Forming

1998-02-23
980453
Preliminary research in our laboratory has demonstrated that boric acid is an effective lubricant with an unusual capacity to reduce the sliding friction (providing friction coefficients as low as 0.02) and wear of metallic and ceramic materials. More recent studies have revealed that water or methanol solutions of boric acid can be used to prepare strongly bonded layers of boric acid on aluminum surfaces. It appears that boric acid molecules have a strong tendency to bond chemically to the naturally oxidized surfaces of aluminum and its alloys and to make these surfaces very slippery. Recent metal-formability tests indicated that the boric acid films applied to aluminum surfaces worked quite well, improving draw scale performance by 58 to 75%.
Technical Paper

Closed Loop Transaxle Synchronization Control Design

2010-04-12
2010-01-0817
This paper covers the development of a closed loop transaxle synchronization algorithm which was a key deliverable in the control system design for the L3 Enigma, a Battery Dominant Hybrid Electric Vehicle. Background information is provided to help the reader understand the history that lead to this unique solution of the input and output shaft synchronizing that typically takes place in a manual vehicle transmission or transaxle when shifting into a gear from another or into a gear from neutral when at speed. The algorithm stability is discussed as it applies to system stability and how stability impacts the speed at which a shift can take place. Results are simulated in The MathWorks Simulink programming environment and show how traction motor technology can be used to efficiently solve what is often a machine design issue. The vehicle test bed to which this research is applied is a parallel biodiesel hybrid electric vehicle called the Enigma.
Video

Comparison of Powertrain Configuration Options for Plug-in HEVs from a Fuel Economy Perspective

2012-05-25
Software products in the automotive industry are by nature widely distributed and costly to update (recall), so high reliability is clearly of utmost importance. Just as clearly, the increasing reliance on remote access to such systems, for diagnostic and other purposes, has made security an essential requirement, and traditional techniques for software development are proving to be inadequate in dealing with these issues. Correctness by Construction is a software design and development methodology that builds reliability and security into the system from the start. It can be used to demonstrate, with mathematical rigor, a program's correctness properties while reducing the time spent during testing and debugging. This paper will discuss the use of Correctness by Construction, and its accompanying SPARK language technology, to improve automotive systems' security and reliability. (The approach can also account for safely issues, although that is not the focus of this paper.)
Technical Paper

Comparison of Powertrain Configuration Options for Plug-in HEVs from a Fuel Economy Perspective

2012-04-16
2012-01-1027
The first commercially available plug-in hybrid electric vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in mid-December 2010. The Volt uses a series-split powertrain architecture, which provides benefits over the series architecture that typically has been considered for use in electric-range extended vehicles (EREVs). A specialized EREV powertrain, called the Voltec, drives the Volt through its entire range of speed and acceleration with battery power alone and within the limit of battery energy, thereby displacing more fuel with electricity than a PHEV, which characteristically blends electric and engine power together during driving. This paper assesses the benefits and drawbacks of these two different plug-in hybrid electric architectures (series versus series-split) by comparing component sizes, system efficiency, and fuel consumption over urban and highway drive cycles.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Technical Paper

Computing Statistical Averages from Large Eddy Simulation of Spray Flames

2016-04-05
2016-01-0585
The primary strength of large eddy simulation (LES) is in directly resolving the instantaneous large-scale flow features which can then be used to study critical flame properties such as ignition, extinction, flame propagation and lift-off. However, validation of the LES results with experimental or direct numerical simulation (DNS) datasets requires the determination of statistically-averaged quantities. This is typically done by performing multiple realizations of LES and performing a statistical averaging among this sample. In this study, LES of n-dodecane spray flame is performed using a well-mixed turbulent combustion model along with a dynamic structure subgrid model. A high-resolution mesh is employed with a cell size of 62.5 microns in the entire spray and combustion regions. The computational cost of each calculation was in the order of 3 weeks on 200 processors with a peak cell count of about 22 million at 1 ms.
Technical Paper

Continuously Variable Transmission Modifications and Control for a Diesel Hybrid Electric Powertrain

2004-08-23
2004-40-0057
The Center for Transportation Research (CTR) Vehicle Systems team modified a Nissan CK-2 Continuously Variable Transmission (CVT) for a diesel hybrid powertrain application. Mechanical and electrical modifications were made to the CVT, both internal and external to the transmission. The goal of this experiment was to investigate and demonstrate the potential of CVT for diesel engines hybrid electric vehicles (HEVs) in fuel economy and emissions. The test set-up consisted of a diesel engine coupled to an electric motor driving a Continuously Variable Transmission (CVT). This hybrid drive is connected to a dynamometer and a DC electrical power source creating a vehicle context by combining advanced computer models and emulation techniques. The experiment focuses on the impact particular transmission control strategies have on measured fuel economy and emissions specifically, nitrogen oxides (NOx) and particulate matter (PM).
Technical Paper

Determining Off-cycle Fuel Economy Benefits of 2-Layer HVAC Technology

2018-04-03
2018-01-1368
This work presents a methodology to determine the off-cycle fuel economy benefit of a 2-Layer HVAC system which reduces ventilation and heat rejection losses of the heater core versus a vehicle using a standard system. Experimental dynamometer tests using EPA drive cycles over a broad range of ambient temperatures were conducted on a highly instrumented 2016 Lexus RX350 (3.5L, 8 speed automatic). These tests were conducted to measure differences in engine efficiency caused by changes in engine warmup due to the 2-Layer HVAC technology in use versus the technology being disabled (disabled equals fresh air-considered as the standard technology baseline). These experimental datasets were used to develop simplified response surface and lumped capacitance vehicle thermal models predictive of vehicle efficiency as a function of thermal state.
Technical Paper

Development in Lost Foam Casting of Magnesium

2003-03-03
2003-01-0821
Preliminary work was conducted in the casting of magnesium using the lost foam casting process. The lost foam or expendable pattern casting (EPC) process is capable of making extremely complicated part shapes at acceptable soundness levels and with low manufacturing costs. Standard test shapes were used to determine the ability of the magnesium to fill the mold and to assess the types of defects encountered. This paper will briefly explain how this project evolved including the developmental strategies formed, the products selected, the casting trials performed, and the casting results.
Technical Paper

Diffusive Sampling of US Navy Submarine Atmospheres

2002-07-15
2002-01-2297
The atmospheres of US Navy Submarines are unique closed environments in which sailors both live and work for extended periods. Although this atmosphere is continuously monitored with a real-time, mass spectrometer-based Central Atmosphere Monitoring System (CAMS), the ability to measure trace constituents is limited. The identity, concentrations and distributions of trace constituents have been studied more exhaustively, in some cases for as long as the duration of a patrol, using conventional active air sampling methods such as passivated stainless steel canisters and solid sorbent tubes. The results from these studies indicate that trace constituents are generally present at concentrations well below levels that would present health concerns. However, these studies also show that there is a fairly wide variation in such levels over time, operational conditions, submarine and class of submarine.
Technical Paper

Direct Measurement of Powertrain Component Efficiencies for a Light-Duty Vehicle with a CVT Operating Over a Driving Cycle

2003-10-27
2003-01-3202
In order to determine the factors that affect fuel economy quantitatively, the power flows through the major powertrain components were measured during operation over transient cycles. The fuel consumption rate and torque and speed of the engine output and axle shafts were measured to assess the power flows in a vehicle with a CVT. The measured power flows were converted to energy loss for each component to get the efficiency. Tests were done at Phase 1 and Phase 3 of the FTP and for two different CVT shift modes. The measured energy distributions were compared with those from the ADVISOR simulation and to results from the PNGV study. For both the Hot 505 and the Cold 505, and for both shift modes, the major powertrain loss occurs in the engine, including or excluding standby losses. However, the efficiency of the drivetrain/transmission is important because it influences the efficiency of the engine.
X