Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Advanced Automatic Transmission Model Validation Using Dynamometer Test Data

2014-04-01
2014-01-1778
As a result of increasingly stringent regulations and higher customer expectations, auto manufacturers have been considering numerous technology options to improve vehicle fuel economy. Transmissions have been shown to be one of the most cost-effective technologies for improving fuel economy. Over the past couple of years, transmissions have significantly evolved and impacted both performance and fuel efficiency. This study validates the shifting control of advanced automatic transmission technologies in vehicle systems by using Argonne National Laboratory's model-based vehicle simulation tool, Autonomie. Different midsize vehicles, including several with automatic transmission (6-speeds, 7-speeds, and 8-speeds), were tested at Argonne's Advanced Powertrain Research Facility (APRF). For the vehicles, a novel process was used to import test data.
Technical Paper

Air-to-Fuel Ratio Calculation Methods for Oxygenated Fuels in Two-Stroke Engines

2015-04-14
2015-01-0965
In 1990, Roy Douglas developed an analytical method to calculate the global air-to-fuel ratio of a two-stroke engine from exhaust gas emissions. While this method has considerable application to two-stroke engines, it does not permit the calculation of air-to-fuel ratios for oxygenated fuels. This study proposed modifications to the Roy Douglas method such that it can be applied to oxygenated fuels. The ISO #16183 standard, the modified Spindt method, and the Brettschneider method were used to evaluate the modifications to the Roy Douglas method. In addition, a trapped air-to-fuel ratio, appropriate for two-stroke engines, was also modified to incorporate oxygenated fuels. To validate the modified calculation method, tests were performed using a two-stroke carbureted and two-stroke direct injected marine outboard engine over a five-mode marine test cycle running indolene and low level blends of ethanol and iso-butanol fuels.
Technical Paper

Efficiency-Optimized Operating Strategy of a Supercharged Hydrogen-Powered Four-Cylinder Engine for Hybrid Environments

2007-07-23
2007-01-2046
As an energy carrier, hydrogen has the potential to deliver clean and renewable power for transportation. When powered by hydrogen, internal combustion engine technology may offer an attractive alternative to enable the transition to a hydrogen economy. Port-injected hydrogen engines generate extremely low emissions and offer high engine efficiencies if operated in a lean combustion strategy. This paper presents experimental data for different constant air/fuel ratio engine combustion strategies and introduces variable air/fuel ratio strategies for engine control. The paper also discusses the shift strategy to optimize fuel economy and contrasts the different engine control strategies in the conventional vehicle environment. The different strategies are evaluated on the urban driving cycle, then engine behaviors are explained and fuel economy is estimated. Finally, the paper projects the potential of hybridization and discusses trends in powertrain cycle efficiencies.
Technical Paper

Energy Efficiency Benefits of Active Transmission Warm-up under Real-World Operating Conditions

2018-04-03
2018-01-0385
Active transmission warm-up systems are used by automotive manufacturers in effort to increase powertrain efficiency and decrease fuel consumption. These systems vary from one manufacturer to another, but their main goal is to capture waste heat from the powertrain and accelerate transmission fluid warm-up. In this study, the fuel consumption benefit from the active transmission warm-up system in a 2013 Ford Taurus 2.0 L EcoBoost is quantified on a cold start UDDS drive cycle at ambient temperatures of −7 and 21 °C. In addition to this, the fuel consumption and greenhouse gas emissions impact on the EPA 5-cycle test, hot start HWY drive cycle, and a cold start, constant speed drive cycle is also quantified. An extra effort to determine the maximum possible benefit of active transmission warm-up is made by modifying the test vehicle to provide external heating to pre-heat and further accelerate the transmission fluid warm-up.
Journal Article

Influence of Injector Location on Part-Load Performance Characteristics of Natural Gas Direct-Injection in a Spark Ignition Engine

2016-10-17
2016-01-2364
Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of natural gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions.
Journal Article

Meeting RFS2 Targets with an E10/E15-like Fuel - Experimental and Analytical Assessment of Higher Alcohols in Multi-component Blends with Gasoline

2013-10-14
2013-01-2612
This paper evaluates the potential of adding higher alcohols to gasoline blendstock in an attempt to improve overall fuel performance. The alcohols considered include ethanol, normal- and iso-structures of propanol, butanol and pentanol as well as normal-hexanol (C2-C6). Fuel performance is quantified based on energy content, knock resistance as well as petroleum displacement and promising multi-component blends are systematically identified based on property prediction methods. These promising multi-component blends, as well as their respective reference fuels, are subsequently tested for efficiency and emissions performance utilizing a gasoline direct injection, spark ignition engine. The engine test results confirm that combustion and efficiency of tailored multi-component blends closely match those of the reference fuels. Regulated emissions stemming from combustion of these blends are equal or lower compared to the reference fuels across the tested engine speed and load regime.
Technical Paper

Performance and Efficiency Assessment of a Production CNG Vehicle Compared to Its Gasoline Counterpart

2014-10-13
2014-01-2694
Two modern light-duty passenger vehicles were selected for chassis dynamometer testing to evaluate differences in performance end efficiency resulting from CNG and gasoline combustion in a vehicle-based context. The vehicles were chosen to be as similar as possible apart from fuel type, sharing similar test weights and identical driveline configurations. Both vehicles were tested over several chassis dynamometer driving cycles, where it was found that the CNG vehicle exhibited 3-9% lower fuel economy than the gasoline-fueled subject. Performance tests were also conducted, where the CNG vehicle's lower tractive effort capability and longer acceleration times were consistent with the lower rated torque and power of its engine as compared to the gasoline model. The vehicles were also tested using quasi-steady-state chassis dynamometer techniques, wherein a series of engine operating points were studied.
Technical Paper

Performance, Efficiency, and Emissions Evaluation of a Supercharged, Hydrogen-Powered, 4-Cylinder Engine

2007-01-23
2007-01-0016
This paper presents the results of efficiency, emissions, and performance testing of a supercharged, hydrogen-powered, four-cylinder engine. Tests were run at various speeds, loads, and air/fuel ratios in order to identify advantageous operating regimes. The tests revealed that a maximum thermal brake efficiency of 37% could be achieved and that certain operating regimes could achieve NOx emissions as low as 1 ppm without aftertreatment. Measurement of cylinder pressure traces in all four cylinders allowed a detailed assessment of cylinder-cylinder deviation. Several measures to further increase hydrogen engine performance in order to reach the goals set by the U.S. Department of Energy are being discussed.
Technical Paper

Prospects on Fuel Economy Improvements for Hydrogen Powered Vehicles

2008-10-06
2008-01-2378
Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered.
Technical Paper

Thermal Model Development and Validation for 2010 Toyota Prius

2014-04-01
2014-01-1784
This paper introduces control strategy analysis and performance degradation for the 2010 Toyota Prius under different thermal conditions. The goal was to understand, in as much detail as possible, the impact of thermal conditions on component and vehicle performances by analyzing a number of test data obtained under different thermal conditions in the Advanced Powertrain Research Facility (APRF) at Argonne National Laboratory. A previous study analyzed the control behavior and performance under a normal ambient temperature; thus the first step in this study was to focus on the impact when the ambient temperature is cold or hot. Based on the analyzed results, thermal component models were developed in which the vehicle controller in the simulation was designed to mimic the control behavior when temperatures of the components are cold or hot. Further, the performance degradation of the components was applied to the mathematical models based on analysis of the test data.
Technical Paper

Transient Efficiency, Performance, and Emissions Analysis of a Hydrogen Internal Combustion Engine Pick-up Truck

2006-10-16
2006-01-3430
Hydrogen is considered one of the most promising future energy carriers. There are several challenges that must be overcome in order to establishing a “hydrogen economy”, including the development of a practical, efficient, and cost-effective power conversion device. Using hydrogen as a fuel for internal combustion engines is a huge step toward developing a large-scale hydrogen infrastructure. This paper summarizes the testing of a hydrogen powered pick-up truck on a chassis dynamometer. The vehicle is powered by a port-injected 8-cylinder engine with an integrated supercharger and intercooler. The 4-wheel drive chassis dynamometer is equipped with a hydrogen delivery, metering and safety system as well as hydrogen specific instrumentation. This instrumentation includes numerous sensors, includes a wide-band lambda sensor and an exhaust gas hydrogen analyzer. This analyzer quantifies the amount of unburned hydrogen in the exhaust indicating the completeness of the combustion.
X