Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Comparison of RCCI Operation with and without EGR over the Full Operating Map of a Heavy-Duty Diesel Engine

2016-04-05
2016-01-0794
Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve high efficiency combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions. A key requirement for extending to high-load operation is reduce the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Natural gas/diesel RCCI engine operation is compared over the EPA Heavy-Duty 13 mode supplemental emissions test with and without EGR.
Journal Article

Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels

2013-09-24
2013-01-2422
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
Technical Paper

Impact of Effective Compression Ratio on Gasoline-Diesel Dual-Fuel Combustion in a Heavy-Duty Engine Using Variable Valve Actuation

2015-09-01
2015-01-1796
Dual-fuel combustion using port-injected gasoline with a direct diesel injection has been shown to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. Reducing compression ratio, in conjunction with a higher expansion ratio using alternative valve timings, decreases compressed charge reactivity while maintain a high expansion ratio for maximum work extraction. Experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate dual-fuel combustion with port gasoline injection to supplement the direct diesel injection. The engine employs intake variable valve actuation (VVA) for early (EIVC) or late (LIVC) intake valve closing to yield reduced effective compression ratio.
Journal Article

Influence of injection strategy in a high-efficiency hydrogen direct injection engine

2011-08-30
2011-01-2001
Energy security and climate change are two of the main drivers for development of sustainable and renewable transportation solutions. Entities around the globe have been working on strategic plans to reduce energy consumption and curb greenhouse gas emissions. In this context hydrogen is frequently mentioned as the fuel and energy carrier of the future. The U.S. Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FCVT) Program has identified hydrogen-powered internal combustion engine (ICE) vehicles as an important mid-term technology on the path to a large-scale hydrogen economy. DOE has set challenging goals for hydrogen internal combustion engines including 45% peak brake thermal efficiency (BTE). This paper summarizes recent research engine test results employing hydrogen direct injection with different injection strategies.
Technical Paper

Numerical Investigation of the Impact of Fuel Injection Strategies on Combustion and Performance of a Gasoline Compression Ignition Engine

2021-04-06
2021-01-0404
Gasoline compression ignition is a promising strategy to achieve high thermal efficiency and low emissions with limited modifications to the conventional diesel engine hardware. It is a partially premixed concept which derives its superiority from higher volatility and longer ignition delay of gasoline-like fuels combined with higher compression ratio typical of diesel engines. The present study investigates the combustion process in a gasoline compression ignition engine using computational fluid dynamics. Simulations are carried out on a single cylinder of a multi cylinder heavy-duty compression ignition engine which operates at a compression ratio of 17:1 and an engine speed of 1038 rev/min. In this study, a late fuel injection strategy is used because it is less sensitive to combustion kinetics compared to early injection strategies, which in turn is a better choice to assess the performance of the spray model.
Technical Paper

Optimizing Thermal Efficiency of a Multi-Cylinder Heavy Duty Engine with E85 Gasoline Compression Ignition

2019-04-02
2019-01-0557
Gasoline compression ignition (GCI) using a single gasoline-type fuel for direct/port injection has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation (EGR)) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high temperature combustion with reduced amounts of EGR appears more practical. Previous studies with 93 AKI gasoline demonstrated that the port and direct injection strategy exhibited the best performance, but the premature combustion event prevented further increase in the premixed gasoline fraction and efficiency.
Journal Article

Reduced Order Modeling of Engine Transients for Gasoline Compression Ignition Combustion Control

2020-09-15
2020-01-2000
This work focuses on reducing the computational effort of a 0-dimensional combustion model developed for compression ignition engines operating on gasoline-like fuels. As in-cylinder stratification significantly contributes to the ignition delay, which in turn substantially influences the entire gasoline compression ignition combustion process, previous modeling efforts relied on the results of a 1-dimensional spray model to estimate the in-cylinder fuel stratification. Insights obtained from the detailed spray model are leveraged within this approach and applied to a reduced order model describing the spray propagation. Using this computationally efficient combustion model showed a reduction in simulation time by three orders of magnitude for an entire engine cycle over the combustion model with the 1-dimensional spray model.
Technical Paper

The Impact of Fuel Injection Strategies and Compression Ratio on Combustion and Performance of a Heavy-Duty Gasoline Compression Ignition Engine

2022-08-30
2022-01-1055
Gasoline compression ignition using a single gasoline-type fuel has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high temperature combustion with reduced amounts of exhaust gas recirculation appears more practical. Furthermore, for high temperature Gasoline compression ignition, an effective aftertreatment system allows high thermal efficiency with low tailpipe-out emissions. In this work, experimental testing was conducted on a 12.4 L multi-cylinder heavy-duty diesel engine operating with high temperature gasoline compression ignition combustion using EEE gasoline.
Technical Paper

Zero-Dimensional Heat Release Modeling Framework for Gasoline Compression-Ignition Engines with Multiple Injection Events

2019-09-09
2019-24-0083
A zero-dimensional heat release model was developed for compression ignition engines. This type of model can be utilized for parametric studies, off-line optimization to reduce experimental efforts as well as model-based control strategies. In this particular case, the combustion model, in a simpler form, will be used in future efforts to control the combustion in compression ignition engines operating on gasoline-like fuels. To allow for a realistic representation of the in-cylinder combustion process, a spray model has been employed to allow for the quantification of fuel distribution as well as turbulent kinetic energy within the injection spray. The combustion model framework is capable of reflecting premixed as well as mixing controlled combustion. Fuel is assigned to various combustion events based on the air-fuel mixture within the spray.
X