Refine Your Search

Topic

Author

Search Results

Journal Article

A Method for Identifying Most Significant Vehicle Parameters for Controller Performance of Autonomous Driving Functions

2019-04-02
2019-01-0446
In this paper a method for the identification of most significant vehicle parameters influencing the behavior of a lateral control system of autonomous car is presented. Requirements for the design stage of the controller need to consider many uncertainties in the plant. While most vehicle properties can be compensated by an appropriate tuning of the control parameters, other vehicle properties can change significantly during usage. The control system is evaluated based on performance measures. Analyzed parameters comprise functional tire characteristics, mass of the vehicle and position of its center of gravity. Since the parameters are correlated, but Sobol’ sensitivity analysis assumes decorrelated inputs, random variation yields no reasonable results. Furthermore, the variation of each parameter or set of parameters is not applicable since the numbers of required simulations is increased significantly according to input dimension.
Technical Paper

A Two-Layer Approach for Predictive Optimal Cruise Control

2016-04-05
2016-01-0634
Optimization-based strategy planning for predictive optimal cruise control has the potential for significant improvements in passenger comfort and fuel efficiency. It is, however, associated with a high computational complexity that complicates its implementation in an electronic control unit. When implementing predictive cruise control, real-time capability must be ensured while maintaining optimal control performance in the presence of disturbance and model uncertainty. Real-time capability can be achieved either by a significant simplification of the optimization problem or by a layered control approach, combining the strategy planner with a low-level controller. Both approaches, however, are prone to deteriorate optimal control performance, particularly in the presence of disturbance. We present a model-predictive controller structure that extends the layered control approach by using the same optimization algorithm on two layers.
Technical Paper

A Two-Measurement Correction for the Effects of a Pressure Gradient on Automotive, Open-Jet, Wind Tunnel Measurements

2006-04-03
2006-01-0568
This paper provides a method that corrects errors induced by the empty-tunnel pressure distribution in the aerodynamic forces and moments measured on an automobile in a wind tunnel. The errors are a result of wake distortion caused by the gradient in pressure over the wake. The method is applicable to open-jet and closed-wall wind tunnels. However, the primary focus is on the open tunnel because its short test-section length commonly results in this wake interference. The work is a continuation of a previous paper [4] that treated drag only at zero yaw angle. The current paper extends the correction to the remaining forces, moments and model surface pressures at all yaw angles. It is shown that the use of a second measurement in the wind tunnel, made with a perturbed pressure distribution, provides sufficient information for an accurate correction. The perturbation in pressure distribution can be achieved by extending flaps into the collector flow.
Technical Paper

Advanced Design and Validation Techniques for Electronic Control Units

1998-02-23
980199
Increasing demand for dynamically controlled safety features, passenger comfort, and operational convenience in upper class automobiles requires an intensive use of electronic control units including software portions. Modeling, simulation, rapid prototyping, and verification of the software need new technologies to guarantee passenger security and to accelerate the time-to-market of new products. This paper presents the state-of-the-art of the design methods for the development of electronic control unit software at BMW. These design methods cover both discrete and continuous system parts, smoothly integrating the respective methods not merely on the code level, but on the documentation, simulation, and design level. In addition, we demonstrate two modeling and prototyping tools for discrete and continuous systems, namely Statemate and MatrixX, and discuss their advantages and drawbacks with respect to necessary prototyping demands.
Technical Paper

Comprehensive Approach for the Chassis Control Development

2006-04-03
2006-01-1280
Handling characteristics, ride comfort and active safety are customer relevant attributes of modern premium vehicles. Electronic control units offer new possibilities to optimize vehicle performance with respect to these goals. The integration of multiple control systems, each with its own focus, leads to a high complexity. BMW and ITK Engineering have created a tool to tackle this challenge. A simulation environment to cover all development stages has been developed. Various levels of complexity are addressed by a scalable simulation model and functionality, which grows step-by-step with increasing requirements. The simulation environment ensures the coherence of the vehicle data and simulation method for development of the electronic systems. The article describes both the process of the electronic control unit (ECU) development and positive impact of an integrated tool on the entire vehicle development process.
Technical Paper

Developing a Theory for Active Grille Shutter Aerodynamics—Part 1: Base Theory

2019-06-07
2019-01-5063
The aim is to develop a theory to describe the aerodynamic behavior of active grille shutters (AGS). The theory correlates the cooling air mass flow and drag of a vehicle with the angle and number of air flaps on the AGS. The relatively simple mathematical formulation of this theory provides an insight into the aerodynamic behavior and characteristic curve shape of AGS. It illustrates how the number of air flaps changes and influences the shape of the AGS characteristic curve. The theory is validated by experiments using wind tunnel measurements on real vehicles with AGS. The comparisons show good agreement between theory and experiment.
Technical Paper

Development of Universal Brake Test Data Exchange Format and Evaluation Standard

2010-10-10
2010-01-1698
Brake system development and testing is spread over vehicle manufacturers, system and component suppliers. Test equipment from different sources, even resulting from different technology generations, different data analysis and report tools - comprising different and sometimes undocumented algorithms - lead to a difficult exchange and analysis of test results and, at the same time, contributes to unwanted test variability. Other studies regarding the test variability brought up that only a unified and unambiguous data format will allow a meaningful and comparative evaluation of these data and only standardization will reveal the actual reasons of test variability. The text at hand illustrates that a substantial part of test variability is caused by a misinterpretation of data and/or by the application of different algorithms.
Technical Paper

Development of a Measurement Technology in Order to Determine the Dynamic Behavior of a Two-Stage Variable Connecting Rod

2018-04-15
2018-01-5002
Variation of the geometric compression ratio in gasoline combustion engines during engine operation enables potential for decreasing fuel consumption as well as emissions. One way to achieve a variable geometric compression ratio (VCR) is the application of a connecting rod with a variable effective length between its large end and its small end. Such a system consists of a connecting rod body with an eccentrically supported piston pin and a linkage which is supported hydraulically. Therefore, the connecting rod evolves from a solid part to a complex assembly of mechanical and hydraulic parts. In order to deploy this system in the most efficient way, an understanding of the physics and the dynamic behavior of the VCR connecting rod is necessary. This includes the mechanical subsystem as well as the hydraulic subsystem. This paper describes the experimental examination of a two stage variable connecting rod.
Technical Paper

Digital Photogrammetry in Analysis of Crash Tests

1999-03-01
1999-01-0081
A new optical system to analyse 3D deformations crashed vehicles is in use at Porsche’s Crash Test Facility. This technology is based on the mathematical law that the spatial location of a point is clearly definable if it is represented by at least 2 images. With the help of an high resolution digital camera, highly developed image processing and photogrammetric algorithms, an automated deformation analysis system is realized. This new measurement technology has numerous advantages over conventional devices, such as coordinate measurement machines, multi section arms and analog photogrammetry. In one example of crash tests the application of this system is described. Comparisons with conventional measurement devices regarding accuracy, costs and process optimization are presented. An outlook to further innovations in analysis of safety tests, if photogrammetry is used as a basic technology, is given.
Technical Paper

Equations and Methods for Testing Hydrogen Fuel Consumption using Exhaust Emissions

2008-04-14
2008-01-1036
Although hydrogen ICE engines have existed in one sort or another for many years, the testing of fuel consumption by way of exhaust emissions is not yet a proven method. The current consumption method for gasoline- and diesel-fueled vehicles is called the Carbon-Balance method, and it works by testing the vehicle exhaust for all carbon-containing components. Through conservation of mass, the carbon that comes out as exhaust must have gone in as fuel. Just like the Carbon-Balance method for gas and diesel engines, the new Hydrogen-Balance equation works on the principle that what goes into the engine must come out as exhaust components. This allows for fuel consumption measurements without direct contact with the fuel. This means increased accuracy and simplicity. This new method requires some modifications to the testing procedures and CVS (Constant Volume Sampling) system.
Technical Paper

Experimental Investigations and Computations of Unsteady Flow Past a Real Car Using a Robust Elliptic Relaxation Closure with a Universal Wall Treatment

2007-04-16
2007-01-0104
In the present work we investigated experimentally and computationally the unsteady flow around a BMW car model including wheels*. This simulation yields mean flow and turbulence fields, enabling the study aerodynamic coefficients (drag and lift coefficients, three-dimensional/spatial wall-pressure distribution) as well as some unsteady flow phenomena in the car wake (analysis of the vortex shedding frequency). Comparisons with experimental findings are presented. The computational approach used is based on solving the complete transient Reynolds-Averaged Navier-Stokes (TRANS) equations. Special attention is devoted to turbulence modelling and the near-wall treatment of turbulence. The flow calculations were performed using a robust, eddy-viscosity-based ζ - ƒ turbulence model in the framework of the elliptic relaxation concept and in conjunction with the universal wall treatment, combining integration up to the wall and wall functions.
Technical Paper

Experimental Study on the Influence of Model Motion on the Aerodynamic Performance of a Race Car

2006-04-03
2006-01-0803
While race cars run in a highly dynamic environment, aerodynamic testing through state of the art wind tunnel tests, as well as CFD analyses, are mostly performed under static or stationary conditions. Therefore, other than track data, only very limited data are available on time resolved aerodynamic forces and pressures for a moving car. To investigate these effects a new model manipulator was developed which allows substantial pitch and heave movements up to 20Hz. Wind tunnel tests with a former LeMans type race car model have shown that the difference between a steady state and a true dynamic analysis is significant.
Technical Paper

FlexRay - The Communication System for Advanced Automotive Control Systems

2001-03-05
2001-01-0676
BMW, DaimlerChrysler, Motorola and Philips present their joint development activity related to the FlexRay communication system that is intended for distributed applications in vehicles. The designated applications for powertrain and chassis control place requirements in terms of availability, reliability and data bandwidth that cannot be met by any product currently available on the market under the testing conditions encountered in an automobile. A short look back on events so far is followed by a description of the protocol and its first implementation as an integrated circuit, as well as its incorporation into a complete tool environment.
Technical Paper

Generation of Realistic Communication Scenarios for the Simulation of Automotive Multiplex Systems

1995-02-01
950294
The increasing complexity of communication protocols for asynchronous multiplex systems requires the use of simulation during the optimisation of these protocols or the integration of other control units. Consideration of realistic communication behaviour of the connected control units is essential for performance analysis of multiplex systems. For a first pass, the use of simple statistical distributions (e.g. Poisson distribution) is suitable to get some simulation results. A better way to get realistic results is the approximation of empirical communication data through the use of more complex statistical distribution (e.g. mixed Erlang distributions). In this paper several approaches for the approximation of empirical data are presented. Beside simple statistical distributions (with one parameter), the use of more complex statistical distributions is discussed and methods for the identification of their parameters are presented.
Technical Paper

Influence of Plenum Dimensions on Drag Measurements in 3/4-Open-Jet Automotive Wind Tunnels

1995-02-01
951000
The size of the room surrounding the wind tunnel test section, the so called wind tunnel plenum, is always seen as an important parameter of the wind tunnel building, but has rarely been the subject of systematic investigation regarding minimal requirements to meet quality objectives for aerodynamic testing. Experimental investigations of this object were made in a quarter-scale wind tunnel (nozzle area 1.4m2). The plenum dimensions were changeable by combinations of different side wall and ceiling positions. The results have shown, that the plenum can have a significant effect on the flow around the vehicle and therefore on the measured forces. Drag coefficient is under prediced if the wind tunnel plenum is too small. Recommendations are provided for the geometric dimensions of a wind tunnel plenum. The data obtained are a valuable tool for the layout of wind tunnel design concepts and for the evaluation of interference free wind tunnel simulation.
Technical Paper

Influence of Test-Section Length and Collector Area on Measurements in ¾-Open-Jet Automotive Wind Tunnels

1988-02-01
880251
A detailed investigation of aerodynamic car testing in ¾-open-test-sections was made. Herein two main influencing variables (dimensionless length scales) could be identified: first, the relative length of the ¾-open-test-section influences the static pressure gradient along the x-axis and, second, the relative collector area has large effects on the wake of a car. The measured values (i.e. drag) are mainly determined by a combined effect of these two parameters. The basic investigation was made in the Porsche 1:4 model-wind-tunnel with two different types of vehicles {sportscar and van) and in two different scales (1:4, 1:5). The results are graphically summarized. This diagram can predict the differences between full size open-jet-wind-tunnels. These predictions were verified by measuring Porsche production cars and the Porsche calibration car in three other automotive wind-tunnels.
Journal Article

Integrated Numerical and Experimental Approach to Determine the Cooling Air Mass Flow in Different Vehicle Development Stages

2010-04-12
2010-01-0287
This paper presents an integrated numerical and experimental approach to take best possible advantage of the common development tools at hand (1D, CFD and wind tunnel) to determine the cooling air mass flow at the different vehicle development stages. 1D tools can be used early in development when neither 3D data nor wind tunnel models with detailed underhood flow are available. A problem that has to be resolved is the dependency on input data. In particular, the pressure coefficients on the outer surface (i.e. at the air inlet and outlet region) and the pressure loss data of single components are of great importance since the amount of cooling air flow is directly linked to these variables. The pressure coefficients at the air inlet and outlet are not only a function of vehicle configuration but also of driving velocity and fan operation. Both, static and total pressure coefficient, yield different advantages and disadvantages and can therefore both be used as boundary conditions.
Technical Paper

Measurement of Reference Dynamic Pressure in Open-Jet Automotive Wind Tunnels

1992-02-01
920344
In automotive open-jet wind tunnels reference velocity is usually measured in terms of a static pressure difference between two different cross-sectional areas of the tunnel. Most commonly used are two sections within the nozzle (Method 1: ΔP-Nozzle). Sometimes, the reference velocity is deduced from the static pressure difference between settling chamber and plenum (Method 2: ΔP-Plenum). Investigations in three full-scale open-jet automotive wind tunnels have clearly shown that determination of reference dynamic pressure according to ΔP-Plenum is physically incorrect. Basically, all aerodynamic coefficients, including drag coefficient, obtained by this method are too low. For test objects like cars and vans it was found that the error ΔcD depends on the test object's drag blockage in an open-jet wind tunnel.
Technical Paper

Model-Based Calibration of an Automotive Climate Control System

2020-04-14
2020-01-1253
This paper describes a novel approach for modeling an automotive HVAC unit. The model consists of black-box models trained with experimental data from a self-developed measurement setup. It is capable of predicting the temperature and mass flow of the air entering the vehicle cabin at the various air vents. A combination of temperature and velocity sensors is the basis of the measurement setup. A measurement fault analysis is conducted to validate the accuracy of the measurement system. As the data collection is done under fluctuating ambient conditions, a review of the impact of various ambient conditions on the HVAC unit is performed. Correction models that account for the different ambient conditions incorporate these results. Numerous types of black-box models are compared to identify the best-suited type for this approach. Moreover, the accuracy of the model is validated using test drive data.
Technical Paper

Modelling the Use Phase of Passenger Cars in LCI

1998-11-30
982179
The results of previous Life Cycle Assessments indicate the ecological dominance of the vehicle's use phase compared to its production and recycling phase. Particularly the so-called weight-induced fuel saving coefficients point out the great spectrum (0.15 to 1.0 l/(100 kg · 100 km)) that affects the total result of the LCA significantly. The objective of this article, therefore, is to derive a physical based, i.e. scientific chargeable and practical approved, concept to determine the significant parameters of a vehicle's use phase for the Life Cycle Inventory. It turns out that - besides the aerodynamic and rolling resistance parameters and the efficiencies of the power train - the vehicle's weight, the rear axle's transmission ratio and the driven velocity profile have an important influence on a vehicle's fuel consumption.
X