Refine Your Search

Topic

Author

Search Results

Technical Paper

A CFD/SEA Approach for Prediction of Vehicle Interior Noise due to Wind Noise

2009-05-19
2009-01-2203
For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (> 500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain mainly an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. The goal of this paper is to present a computational approach developed to predict the greenhouse windnoise contribution to the interior noise heard by the vehicle passengers. This method is based on coupling an unsteady Computational Fluid Dynamics (CFD) solver for the windnoise excitation to a Statistical Energy Analysis (SEA) solver for the structural acoustic behavior.
Technical Paper

A Fluid-Structure Interaction Scheme for Prediction of Flow-Induced Low Frequency Booming Noise

2018-06-13
2018-01-1521
The analysis of the acoustic behavior of flow fields has gained importance in recent years, especially in the automotive industry. The comfort of the driver is heavily influenced by the noise levels and characteristics, especially during long distance drives. Simulation tools can help to analyze the acoustic properties of a car at an early stage of the development process. This work focuses on the low-frequency sound effects, which can be a significant noise component under certain operating conditions. As a first step in the fluid-structure interaction workflow, the flow around a series-production vehicle is simulated, including passenger cabin and underhood flow. The complexity of this model poses extensive demands on the simulation software, concerning meshing, turbulence modeling and level of parallelism. We conducted a transient simulation of the compressible fluid flow, using a hybrid RANS/LES approach.
Technical Paper

A Numerical Investigation of Dampening Dynamic Profiles for the Application in Transient Vehicle Thermal Management Simulations

2014-04-01
2014-01-0642
As computational methodologies become more integrated into industrial vehicle pre-development processes the potential for high transient vehicle thermal simulations is evident. This can also been seen in conjunction with the strong rise in computing power, which ultimately has supported many automotive manufactures in attempting non-steady simulation conditions. The following investigation aims at exploring an efficient means of utilizing the new rise in computing resources by resolving high time-dependent boundary conditions through a series of averaging methodologies. Through understanding the sensitivities associated with dynamic component temperature changes, optimised boundary conditions can be implemented to dampen irrelevant input frequencies whilst maintaining thermally critical velocity gradients.
Technical Paper

AJ (Mg-Al-Sr) Alloy Mechanical Properties: From Fatigue to Crack Propagation

2005-04-11
2005-01-0729
In addition to the creep properties, the fatigue properties are essential for the design of a power-train component in Mg which is operated at elevated temperatures. In case of the new BMW I6 composite Mg/Al crankcase using the AJ alloy system, material testing focused on both subjects. The basic mechanical properties were determined from separately die cast samples and also from samples machined out from high-pressure die cast components. Tensile, high cycle fatigue properties, low cycle fatigue and crack propagation properties were established and analyzed within the technical context for power-train applications reflected in the temperature and load levels. The aspects of mean stress influence, notch sensitivity and crack propagation are evaluated to estimate the performances of the AJ62A alloy system.
Technical Paper

AJ (Mg-Al-Sr) Alloy System Used for New Engine Block

2004-03-08
2004-01-0659
AJ alloy is used with a new Aluminum-Magnesium Composite Design, which is an innovative approach to lightweight crankcase technology. The component is manufactured using high pressure die cast process. A wide range of chemical compositions was used to develop a good understanding of the behavior of this alloy system (castability, thermophysical, mechanical, microstructure). The basic mechanical properties were determined from separately die cast samples and also from samples machined out from high pressure die cast components. Tensile, creep, bolt load retention/relaxation and high cycle fatigue properties were established and analyzed using multivariate analysis and statistical approach. This methodology was used to select the optimal chemical composition to match the requirements. The sensitivity of the alloy to heat exposure was investigated for both mechanical properties and microstructure.
Technical Paper

Advanced squeak and rattle noise prediction for vehicle interior development – numerical simulation and experimental validation

2024-06-12
2024-01-2925
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The novel method is based on non-linear theories in the frequency domain. It uses the harmonic balance method in combination with the alternating frequency/time domain method to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked.
Technical Paper

Aerodynamic Forces of Exposed and Enclosed Rotating Wheels as an Example of the Synergy in the Development of Racing and Passenger Cars

2006-04-03
2006-01-0805
The aim of this report is to present the results obtained from the wind tunnel tests performed in the BMW wind tunnel regarding the pressure distribution on a rotating wheel. The acquired data is used to examine its flow topology for the “open” and “enclosed” cases and determine the wheel drag, lift and side forces by integrating the pressure distribution on its surface. The investigation concerned such measurements on a half scale model wheel. Its pressure distribution was identified with and without the presence of a racecar body. The wheel was also mounted on a half scale passenger car body and pressure measurements were taken with and without a wheel spoiler. After the pressure distributions were known for all configurations, the aerodynamic forces generated were determined. The influence of boundary layer thickness on them was also investigated. A better understanding of the forces the model wheel is subjected to is gained.
Technical Paper

Aerodynamic Performance Assessment of BMW Validation Models using Computational Fluid Dynamics

2012-04-16
2012-01-0297
Aerodynamic performance assessment of automotive shapes is typically performed in wind tunnels. However, with the rapid progress in computer hardware technology and the maturity and accuracy of Computational Fluid Dynamics (CFD) software packages, evaluation of the production-level automotive shapes using a digital process has become a reality. As the time to market shrinks, automakers are adopting a digital design process for vehicle development. This has elevated the accuracy requirements on the flow simulation software, so that it can be used effectively in the production environment. Evaluation of aerodynamic performance covers prediction of the aerodynamic coefficients such as drag, lift, side force and also lift balance between the front and rear axle. Drag prediction accuracy is important for meeting fuel efficiency targets, prediction of front and rear lifts as well as side force and yawing moment are crucial for high speed handling.
Technical Paper

Analysis of Underbody Windnoise Sources on a Production Vehicle using a Lattice Boltzmann Scheme

2007-05-15
2007-01-2400
A computational analysis of underbody windnoise sources on a production automobile at 180 km/h free stream air speed and 0° yaw is presented. Two different underbody geometry configurations were considered for this study. The numerical results have been obtained using the commercial software PowerFLOW. The simulation kernel of this software is based on the numerical scheme known as the Lattice-Boltzmann Method (LBM), combined with a two-equation RNG turbulence model. This scheme accurately captures time-dependent aerodynamic behavior of turbulent flows over complex detailed geometries, including the pressure fluctuations causing wind noise. Comparison of pressure fluctuations levels mapped on a fluid plane below the underbody shows very good correlation between experiment and simulation. Detailed flow analysis was done for both configurations to obtain insight into the transient nature of the flow field in the underbody region.
Technical Paper

BMW High Precision Fuel Injectionin Conjunction with Twin-Turbo Technology: a Combination for Maximum Dynamic and High Fuel Efficiency

2007-04-16
2007-01-1560
The new inline six cylinder Twin-Turbo gasoline engine forms the pinnacle of BMW's wide range of straight-six power units, developing maximum output of 300hp and a peak torque of 300 lb-ft with a displacement of 3.0 litre. Using two turbochargers in combination with the new BMW High Precision Fuel Injection leads to a responsive build-up of torque and to an impressive development of power over a wide engine speed range. This paper gives a detailed overview of the turbocharger-and the injection system and describes the effect of both systems on power and torque, as well as on fuel consumption and emission. The big advantage of using two small turbochargers is their low moment of inertia, even the slightest movement of the accelerator pedal by the driver's foot serving to immediately build up superior pressure and power. This puts an end to the turbo “gap” previously typical of a turbocharged power unit.
Technical Paper

BMW's Magnesium-Aluminium Composite Crankcase, State-of-the-Art Light Metal Casting and Manufacturing

2006-04-03
2006-01-0069
This paper presents new aspects of the casting and manufacturing of BMWs inline six-cylinder engine. This new spark-ignition engine is the realization of the BMW concept of efficient dynamics at high technological level. For the first time in the history of modern engine design, a water-cooled crankcase is manufactured by magnesium casting for mass production. This extraordinary combination of magnesium and aluminium is a milestone in engine construction and took place at the light-metal foundry at BMW's Landshut plant. This paper gives a close summary about process development, the constructive structure, and the manufacturing and testing processes.
Technical Paper

Comparison of Methods Between an Acceleration-Based In-Situ and a New Hybrid In-Situ Blocked Force Determination

2022-06-15
2022-01-0979
The NVH-development cycle of vehicle components often requires a source characterization separated from the vehicle itself, which leads to the implementation of test bench setups. In the context of frequency based substructuring and transfer path analysis, a component can be characterized using Blocked Forces. The following paper provides a comparison of methods between an acceleration-based in-situ and a new hybrid in-situ Blocked Force determination, using measurements of an artificially excited electric power steering (EPS). Under real-life conditions on a test rig, the acceleration-based in-situ approach often shows limitations in the lower frequency range, due to relatively bad signal-to-noise ratio at the indicator sensors, while delivering accurate results in the higher spectrum. Due to considerable loads on components in operation, the stiffness of the test-rig cannot be decreased arbitrarily.
Technical Paper

Cycle Life Investigations on Different Li-Ion Cell Chemistries for PHEV Applications Based on Real Life Conditions

2012-04-16
2012-01-0656
Plug-In Hybrid Electric Vehicles (PHEV) are becoming increasingly important as an intermediate step on the roadmap to Battery Electric Vehicles (BEV). Li-Ion is the most important battery technology for future hybrid and electrical vehicles. Cycle life of batteries for automotive applications is a major concern of design and development on vehicles with electrified powertrain. Cell manufacturers present various cell chemistries based on Li-Ion technology. For choosing cells with the best cycle life performance appropriate test methods and criteria must be obtained. Cells must be stressed with accelerated aging methods, which correlate with real life conditions. There is always a conflict between high accelerating factors for fast results on the one hand and best accordance with reality on the other hand. Investigations are done on three different Li-Ion cell types which are applicable in the use of PHEVs.
Technical Paper

Cylinder Heads for High Power Gasoline Engines - Thermomechanical Fatigue Life Prediction

2006-04-03
2006-01-0541
Increasing demands on engine efficiency and specific power have resulted in progressively higher loadings on internal components of combustion engines. Therefore the durability assessment of such components is increasingly in demand, triggered by both reliability and economic requirements. Within this context the TMF cylinder head simulation process established at BMW is presented in the following article. The numerical model is able to account for thermo-mechanical loading histories. These lead to a transient evolution of the material characteristics during the lifetime due to aging in aluminum alloys. Therefore a viscoplastic constitutive model is coupled with an aging model to handle the change in precipitation structure and the effect on the material properties, especially for non heat-treated secondary aluminum alloys. The local damage evolution is modeled based on the growth of micro cracks.
Technical Paper

Developing Planar Laser-Induced Fluorescence for the Investigation of the Mixture Formation Process in Hydrogen Engines

2004-03-08
2004-01-1408
Planar laser-induced fluorescence (PLIF) has been successfully used for the investigation of the mixture formation process in hydrogen engines. Detailed information has been obtained about the process development (qualitative measurements) and on the fuel/air-ratio (quantitative measurements) in the combustion chamber. These results can be used for further optimization of the mixture formation and the combustion process concerning emissions and fuel consumption. The measurement technique used here is not limited to hydrogen and can also be applied to other fuel gases like natural gas. The main topic of this paper is the experimental verification of the PLIF data by simultaneous Raman scattering measurements. By Raman scattering the fuel/air-ratio can directly be determined from the direct concentration measurements of the different gas species.
Technical Paper

Development and Application of a New Mass Spectrometer Based Measurement System for Fast Online Monitoring of Oil Emission in the Raw Exhaust Gas of Combustion Engines

2002-10-21
2002-01-2713
An increasing environmental consciousness as well as the awareness for sustained preservation of natural resources causes new regulations for emissions and great efforts for fuel economy and increasing oil service intervals. For a better understanding of the process generating pollutants, the emissions of every phase of the combustion cycle have to be monitored online. Moreover, it is important to measure the raw exhaust gas during different driving cycles and investigate the influence of different parameters as for example changing engine operating conditions. The new mass spectrometer (MS) based measurement system allows the direct detection of unburned gaseous oil HC without tracers. The gas inlet system enables crank angle resolved monitoring of different raw exhaust gas compounds in the exhaust manifold or directly in the cylinder.
Technical Paper

Experimental Analysis of the Underbody Pressure Distribution of a Series Vehicle on the Road and in the Wind Tunnel

2008-04-14
2008-01-0802
Underbody aerodynamics has become increasingly important over the last three decades because of its vital contribution to improving a vehicle's overall performance. This was the motivation for the research conducted by BMW Aerodynamics, concerning the determination of the overall pressure distribution on the underbody of a series-production vehicle. Static pressure measurements have been taken under various test conditions. Real on-road tests were carried out as well as wind tunnel experiments under application of different road simulation techniques. The analyzed vehicle configurations include wheel rim-tire and body modifications. The results presented include surface pressure data, drag and lift coefficients, ride heights, pitch and roll angles. The acquired data is used to examine the underbody flow topology and determine how the diverse attempts to represent the real on-road conditions affect its pressure distribution.
Technical Paper

Experimental Investigation of Unsteady Vehicle Aerodynamics under Time-Dependent Flow Conditions - Part 1

2011-04-12
2011-01-0177
Unsteady aerodynamic flow phenomena are investigated in the wind tunnel by oscillating a realistic 50% scale model around its vertical axis. Thus the model is exposed to time-dependent flow conditions at realistic Reynolds and Strouhal numbers. Using this setup unsteady aerodynamic loads are observed to differ significantly from quasi-steady loads. In particular, the unsteady yaw moment exceeds the quasi-steady approximation by 80%. On the other hand, side force and roll moment are over predicted by quasi-steady approximation but exhibit a significant time delay. Using hotwire anemometry, a delayed reaction of the wake flow of Δt/T = 0.15 is observed, which is thought to be the principal cause for the differences between unsteady and quasi-steady aerodynamic loads. A schematic mechanism explaining these differences due to the delayed reaction of the wake flow is proposed.
Technical Paper

Experimental Investigation of Unsteady Vehicle Aerodynamics under Time-Dependent Flow Conditions - Part2

2011-04-12
2011-01-0164
Unsteady aerodynamic flow phenomena are investigated in a wind tunnel by oscillating a realistic 50% scale model around the vertical axis. Thus the model is exposed to time-dependent flow conditions at realistic Reynolds and Strouhal numbers. Using this setup unsteady aerodynamic loads are observed to differ significantly from quasi steady loads. In particular, the unsteady yaw moment exceeds the quasi steady approximation significantly. On the other hand, side force and roll moment are over predicted by quasi steady approximation but exhibit a significant time delay. Part 2 of this study proves that a delayed and enhanced response of the surface pressures at the rear side of the vehicle is responsible for the differences between unsteady and quasi steady loads. The pressure changes at the vehicle front, however, are shown to have similar amplitudes and almost no phase shift compared to quasi steady flow conditions.
Journal Article

Further Investigations on the Flow Around a Rotating, Isolated Wheel with Detailed Tread Pattern

2015-04-14
2015-01-1554
Efforts in aerodynamic optimization of road vehicles have been steadily increasing in recent years, mainly focusing on the reduction of aerodynamic drag. Of a car's total drag, wheels and wheel houses account for approx. 25 percent. Consequently, the flow around automotive wheels has lately been investigated intensively. Previously, the authors studied a treaded, deformable, isolated full-scale tire rotating in contact with the ground in the wind tunnel and using the Lattice-Boltzmann solver Exa PowerFLOW. It was shown that applying a common numerical setup, with velocity boundary condition prescribed on the tread, significant errors were introduced in the simulation. The contact patch separation was exaggerated and the flow field from wind tunnel measurements could not be reproduced. This investigation carries on the work by examining sensitivities and new approaches in the setup.
X