Refine Your Search

Topic

Search Results

Technical Paper

A Study of the Adaptability of Three Way Catalytic Converter under Hydrogen-Gasoline Dual-Fuel Alternate Working Mode

2014-04-01
2014-01-1342
Nowadays, the world is facing severe energy crisis and environment problems. Development of hydrogen fuel vehicles is one of the best ways to solve these problems. Due to the difficulties of infrastructures, such as the hydrogen transport and storage, hydrogen fuel vehicles have not been widely used yet. As a result, Hydrogen-gasoline dual-fuel vehicle is a solution as a compromise. In this paper, three way catalytic converter (TWC) was used to reduce emissions of hydrogen-gasoline dual-fuel vehicles. On wide open throttle and load characteristics, the conversion efficiency of TWC in gasoline engine was measured. Then the TWC was connected to a hydrogen internal combustion engine. After switching the hydrogen and gasoline working mode, emission data was measured. Experiment results show that the efficiency of a traditional TWC can be maintained above 85%., while it works in a hydrogen-gasoline dual-fuel alternative working mode.
Technical Paper

An Experimental Investigation on Combustion and Emissions Characteristics of Turbocharged DI Engines Fueled with Blends of Biodiesel

2005-05-11
2005-01-2199
Turbocharged and intercooled DI engines, fueled with different blends of biodiesel and diesel fuel, were chosen to conduct performance and emission tests on dynamometers. The properties of the test fuels were tested. The cylinder pressure and fuel injection pressure signals were recorded and combustion analysis was conducted. The engine exhaust emissions were measured. The results of the study indicated that HC, CO, PM and smoke emissions improvement was obtained. But there was an increase in fuel consumption and NOx emission, and a slight drop in power with the blends. The combustion analysis showed that biodiesel had a shorter ignition delay and a lower premixed combustion amount, but had an early start of injection caused by the fuel properties. The relationship between combustion and emissions was discussed.
Technical Paper

An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine

2017-03-28
2017-01-0755
Dual-fuel combustion combining a premixed charge of compressed natural gas (CNG) and a pilot injection of diesel fuel offer the potential to reduce diesel fuel consumption and drastically reduce soot emissions. In this study, dual-fuel combustion using methane ignited with a pilot injection of No. 2 diesel fuel, was studied in a single cylinder diesel engine with optical access. Experiments were performed at a CNG substitution rate of 70% CNG (based on energy) over a wide range of equivalence ratios of the premixed charge, as well as different diesel injection strategies (single and double injection). A color high-speed camera was used in order to identify and distinguish between lean-premixed methane combustion and diffusion combustion in dual-fuel combustion. The effect of multiple diesel injections is also investigated optically as a means to enhance flame propagation towards the center of the combustion chamber.
Technical Paper

An Optical Investigation on the Combustion Characteristics of Gasoline-Diesel Dual-Fuel Applications

2014-04-01
2014-01-1310
The combustion characteristics of gasoline-diesel dual-fuel in an electronic-controlled high pressure common rail optical engine were investigated under different diesel injection timings and gasoline/diesel ratios by a high-speed photography method. The experimental results show that the dual-fuel combustion process is influenced by diesel combustion and gasoline homogenous combustion, respectively, with bright yellow flames and blue flames observed in the combustion chamber. At a gasoline/diesel ratio of 0.91, the injection timing affects the ignition timing and combustion modes significantly. When the diesel injection timing is before −25° after top dead center (ATDC), advancing the injection timing tends to prolong the ignition delay and the gasoline-diesel dual-fuel combustion is similar to the pre-mixed charge compression ignition (PCCI) combustion with a rapid single-stage heat release.
Technical Paper

Analysis on the Influence of Key Parameters of Control Valve on the Performance Characteristics of Electromagnetic Injector

2017-10-08
2017-01-2310
The control valve is the most important implementation part of a high pressure common rail system, and its flow characteristics have a great influence on the performance of an injector. In this paper, based on the structure and the working principle of an electromagnetic injector in a high pressure common rail system, a simulation model of the injector is established by AMESim software. Some key parameters of the control valve, including the volume of the control chamber, the diameter of the orifice Z (feeding orifice), the diameter of the orifice A (discharge orifice) and the hole diameter of the fuel diffusion hole are studied by using this model. The results show that these key structural parameters of the control valve have a great influence on the establishment of the control chamber pressure and the action of the needle valve.
Technical Paper

Boost System with Auxiliary Gas Turbine Used for Recovering Diesel Engine Power at Plateau Conditions

2015-04-14
2015-01-1136
A boost system with an auxiliary gas turbine used to recover diesel engine power at plateau conditions is proposed. System matching calculation, preliminary design, and performance simulation of the compressor with double parameter output are presented, as well as the preliminary design, flow simulation, and combustion process of the combustion chamber. Results show that the new system has better recovery performance and higher fuel economy potential than the simple charging scheme. For future research work, possible improvements and development direction are recommended.
Technical Paper

Comparative Research on Emission Characteristic and Combustion Characteristic of Gasoline Direct Injection and Port Fuel Injection for Free-Piston Linear Generator

2020-09-15
2020-01-2220
As a new type of energy, free-piston linear generator (FPLG) attracts more research on its stable operation and power performance, while less on its combustion and emission performance. So, in this paper, the emission characteristics of FPLG in two different modes are studied through a port fuel injection (PFI) mode which was verified by the experiment and a gasoline direct injection (GDI) mode. The results showed that: both the GDI mode and the PFI mode produced large amounts of nitrogen oxide (NOx) during the working process. But the GDI mode produced before the PFI mode and it produced nearly 2 times than the PFI mode. However, the formation rate of NOx in GDI mode is much lower than that in PFI mode. Meanwhile, in both modes, 90% of NOX was generated in the cylinder at the temperature higher than 1750K, and only about 10% of NOX was generated at a temperature lower than 1750K.
Technical Paper

Comparison of Regulated Emissions and Particulate Matter of Gasoline/CNG Dual-Fuel Taxi Over New European Driving Cycle

2014-04-01
2014-01-1467
Compressed natural gas (CNG) is widely used as an alternative option in spark ignition engines because of its better fuel economy and in part cleaner emissions. To cope with the haze weather in Beijing, about 2000 gasoline/CNG dual-fuel taxis are servicing on-road. According to the government's plan, the volume of alternative fuel and pure electric vehicle will be further increased in the future. Thus, it is necessary to conduct an evaluation on the effectiveness of alternative fuel on curbing vehicular emissions. This research examined the regulated emissions and particulate matter of gasoline/CNG dual-fuel taxi over New European Driving Cycle (NEDC). Emission tests in gasoline- and CNG-fuelled, cold- and warm-start modes were done for all five taxies. Test vehicles, Hyundai Elantra, are powered by 1.6L spark-ignited engines incorporated with 5-gear manual gearboxes.
Technical Paper

Controlling Strategy for the Performance and NOx Emissions of the Hydrogen Internal Combustion Engines with a Turbocharger

2020-04-14
2020-01-0256
Hydrogen fuel is a future energy to solve the problems of energy crisis and environmental pollution. Hydrogen internal combustion engines can combine the advantage of hydrogen without carbon pollution and the main basic structure of the traditional engines. However, the power of the port fuel injection hydrogen engines is smaller than the same volume gasoline engine because the hydrogen occupies the volume of the cylinder and reduces the air mass flow. The turbocharger can increase the power of hydrogen engines but also increase the NOx emission. Hence, a comprehensive controlling strategy to solve the contradiction of the power, BTE and NOx emission is important to improve the performance of hydrogen engines. This paper shows the controlling strategy for a four-stroke, 2.3L hydrogen engine with a turbocharger. The controlling strategy divides the operating conditions of the hydrogen engine into six parts according to the engine speeds and loads.
Technical Paper

Design and Optimization of Injector Based on Voice Coil Motor

2017-10-08
2017-01-2301
The electronic control of direct injection fuel system, which could improve engine fuel efficiency, dynamics and engine emission performance through good atomization, precise control of fuel injection time and improvement of fuel-gas mixture, is the key technology to achieve the stratified combustion and lean combustion. In this paper, a direct injection injector that based on voice coil motor was designed aiming at the technical characteristics of one 800cc two-stroke cam-less engine. Prior to a one - dimensional simulation model of injector was established by AMEsim and the maximal fuel injection demand was met via the optimization of the main parameters of the injector, the structure of the voice coil motor was optimized by magnetic equivalent circuit method. After that, the maximal flow rate of the injector was verified by the injector bench test while the atomization characteristic of the injector was verified by using a high-speed camera.
Technical Paper

Design and Performance Simulation of Opposed-Piston Folded-Cranktrain Engines

2014-04-01
2014-01-1638
In this paper, a new-type balanced opposed-piston folded-cranktrain (OPFC) two-stroke diesel engine is developed by Beijing Institute of Technology. OPFC has some potential advantages such as simple structure, good balance, compact, high power density and thermal efficiency. The structural feature of OPFC engine leads to the performance is different with the conventional engine. In order to study and verify the characteristics of this kind of engine, the folded-crank train dynamics, cylinders scavenging process and combustion process are investigated. The influence of parameters on the engine performance is investigated, includes the fuel injection timing, intake/exhaust port timing. In addition, the nozzle diameter is investigated as a main factor to affect the mixture and combustion process in the cylinder.
Technical Paper

Effect of Ethanol Addition on Soot Formation of Gasoline in Laminar Diffusion Flames

2017-10-08
2017-01-2396
Soot emission, known as PM (particulate matter), is becoming a big issue for GDI engines as the emission regulations being increasingly stricter. It is found that ethanol, as an oxygenated bio-fuel, can reduce the soot emission when added to gasoline. In order to fully understand the effect of ethanol on soot reducing, the soot characteristics of ethanol/gasoline blends were studied on laminar diffusion flames. In this experiment, the blending ratio of ethanol/gasoline was set as E0/20/40/60/80. Considering the carbon content decreasing due to ethanol addition, carbon mass flow rate was remained constant. The two-dimensional distributions of soot volume fraction were measured quantitatively by using two-color laser induced incandescence technique. The results showed that ethanol is able to decrease the soot significantly, but the effect of ethanol on soot reduction is weakened with the increasing ethanol ratio.
Technical Paper

Effect of Hydrogen Fraction on Laminar Flame Characteristics of Methanol-Hydrogen-Air Mixture at Atmospheric Pressure

2017-10-08
2017-01-2277
Methanol has been regarded as a potential transportation fuel due to its advanced combustion characteristics and flexible source. However, it is suffering from misfire and high HC emissions problems under cold start and low load conditions either on methanol SI engine or on methanol/diesel dual fuel engine. Hydrogen is a potential addition that can enhance the combustion of methanol due to its high flammability and combustion stability. In the current work, the effect of hydrogen fraction on the laminar flame characteristics of methanol- hydrogen-air mixture under varied equivalence ratio was investigated on a constant volume combustion chamber system coupled with a schlieren setup. Experiments were performed over a wide range of equivalence ratio of the premixed charge, varied from 0.8 to 1.4, as well as different hydrogen fraction, 0%, 5%, 10%, 15% and 20% (n/n). All tests were carried out at fixed temperature and pressure of 400K and 0.1MPa.
Technical Paper

Effects of Nozzle Hole Diameter on Diesel Sprays in Constant Injection Mass Condition

2017-10-08
2017-01-2300
As known, the constant injection mass is a criterion for measuring the thermal efficiency of diesel engines. In this study, the effects of nozzle hole diameter on diesel free-spray characteristics were investigated in constant injection mass condition. The experiment was performed in a constant volume combustion chamber equipped with a high pressure common-rail injector that can change nozzles. Three single-hole axis nozzles with different hole diameters were used. High speed camera and Schlieren visualization set-up were used to capture the spray behaviors of liquid phase and vapor phase respectively. For liquid phase spray, the higher nozzle hole diameter, the higher were the liquid phase spray penetration rate and the saturated liquid phase spray penetration length. The saturated liquid phase spray penetration length wound not grow but oscillate around different mean values at the steady stage.
Technical Paper

Estimating Ozone Potential of Pipe-out Emissions from Euro-3 to Euro-5 Passenger Cars Fueled with Gasoline, Alcohol-Gasoline, Methanol and Compressed Natural Gas

2016-04-05
2016-01-1009
Along with the booming expansion of private car preservation, many Chinese cities are now struggling with hazy weather and ground-level ozone contamination. Although central government has stepped up efforts to purify skies above China, counter-strategies to curb ground-level ozone is comparatively weak. By using maximum incremental reactivity (MIR) method, this paper estimated the ozone forming potential for twenty-five Euro-3 to Euro-5 passenger cars burning conventional gasoline, methanol-gasoline, ethanol-gasoline, neat methanol and compressed natural gas (CNG). The results showed that, for all the fuel tested, VOC/NOx ratios and SR values decreased with the upgrading of emission standard. Except for Euro-3 M100 and Euro-4 M85, SR values for alternative fuel were to different degrees smaller than those for gasoline. When the emission standard was shifted from Euro-4 to Euro-5, OFP values estimated for gasoline vehicle decreased.
Technical Paper

Investigation on the Deformation of Injector Components and Its Influence on the Injection Process

2020-04-14
2020-01-1398
The deformation of injector components cannot be disregarded as the pressure of the system increases. Deformation directly affects the characteristics of needle movement and injection quantity. In this study, structural deformation of the nozzle, the needle and the control plunger under different pressures is calculated by a simulation model. The value of the deformation of injector components is calculated and the maximum deformation location is also determined. Furthermore, the calculated results indicates that the deformation of the control plunger increases the control chamber volume and the cross-section area between the needle and the needle seat. A MATLAB model is established to The influence of structural deformation on needle movement characteristics and injection quantity is investigate by a numerical model. The results show that the characteristic points of needle movement are delayed and injection quantity increases due to the deformation.
Technical Paper

Numerical Simulation and Optimization for Combustion of an Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle (UAV)

2020-04-14
2020-01-0782
An opposed piston two-stroke engine is more suitable for use in an unmanned aerial vehicle because of its small size, excellent self-balancing, stable operation, and low noise. Consequently, in this study, based on experimental data for a prototype opposed piston two-stroke engine, numerical simulation models were established using GT-POWER for 1D simulation and AVL-FIRE for 3D CFD simulation. The mesh grid and solver parameters for the numerical model of the CFD simulation were determined to guarantee the accuracy of the numerical simulation, before studying and optimizing the ventilation efficiency of the engine with different dip angles. Furthermore, the fuel spray and combustion were analyzed and optimized in details.
Technical Paper

One-dimensional Simulation Study on the Rule of Several-parameter Matching for the Performance of a Turbocharged Diesel Engine

2008-06-23
2008-01-1696
One-dimensional combustion performance of a turbocharged V-type eight-cylinder diesel engine was computed by used of WAVE code. The parameters of compress ratio, intake temperature, intake pressure, fuel injection quantity, advance angle of injection, fuel injection rate and fuel injection duration were changed so as to study quantificationally how these parameters affect the power, fuel consume, the max combustion pressure, exhaust temperature and emission of the diesel engine. The computational results could help to accomplish the preliminary optimization of several parameters for combustion matching and supplement experimental experience and exploit new products.
Technical Paper

Proceedings of Real Driving Emission (RDE) Measurement in China

2018-04-03
2018-01-0653
Light-duty China-6, which is among the most stringent vehicle exhaust emission standards globally, mandates the monitoring and reporting of real driving emissions (RDE) from July, 2023. In the process of regulation promulgation and verification, more than 300 RDE tests have been performed on over 50 China-5 and China-6 certified models. This technical paper endeavors to summarize the experience of RDE practice in China, and discuss the impacts of some boundary conditions (including vehicle dynamic parameters, data processing methods, hybrid propulsion and testing altitude) on the result of RDE measurement. In general, gasoline passenger cars confront few challenges to meet the upcoming RDE NOx requirement, but some China-5 certified samples, even powered by naturally-aspirated engines may have PN issues. PN emissions from some GDI-hybrid powertrain systems also need further reduction to meet China-6 RDE requirements.
Technical Paper

Regulated, Carbonyl Emissions and Particulate Matter from a Dual-Fuel Passenger Car Burning Neat Methanol and Gasoline

2015-04-14
2015-01-1082
As a probable solution to both energy and environmental crisis, methanol and methanol gasoline have been used as gasoline surrogates in several provinces of China. Most recently, the Ministry of Environmental Protection of China is drafting a special emission standard for methanol-fueled light-duty vehicles. Given the scarcity of available data, this paper evaluated regulated emissions, carbonyl compounds and particulate matter from a China-5 certificated gasoline/methanol dual-fuel vehicle over New European Driving Cycle (NEDC). The results elucidated that in context with gasoline mode, CO emitted in methanol mode decreased 11.2%, while no evident changes of THC and NOx emissions were noticed with different fueling regimes. The total carbonyls and formaldehyde have increased by 39.5% and 19.8% respectively after switching from gasoline to methanol. A remarkable decrease of 65.6% in particulate matter was observed in methanol mode.
X