Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Control-Oriented Knock Intensity Estimator

2017-09-04
2017-24-0055
The performance optimization of modern Spark Ignition engines is limited by knock occurrence: heavily downsized engines often are forced to work in the Knock-Limited Spark Advance (KLSA) range. Knock control systems monitor the combustion process, allowing to achieve a proper compromise between performance and reliability. Combustion monitoring is usually carried out by means of accelerometers or ion sensing systems, but recently the use of cylinder pressure sensors is also becoming frequent in motorsport applications. On the other hand, cylinder pressure signals are often available in the calibration stage, where SA feedback-control based on the pressure signal can be used to avoid damages to the engine during automatic calibration. A predictive real-time combustion model could help optimizing engine performance, without exceeding the allowed knock severity.
Technical Paper

A Modified Enhanced Driver Model for Heavy-Duty Vehicles with Safe Deceleration

2023-08-28
2023-24-0171
To accurately evaluate the energy consumption benefits provided by connected and automated vehicles (CAV), it is necessary to establish a reasonable baseline virtual driver, against which the improvements are quantified before field testing. Virtual driver models have been developed that mimic the real-world driver, predicting a longitudinal vehicle speed profile based on the route information and the presence of a lead vehicle. The Intelligent Driver Model (IDM) is a well-known virtual driver model which is also used in the microscopic traffic simulator, SUMO. The Enhanced Driver Model (EDM) has emerged as a notable improvement of the IDM. The EDM has been shown to accurately forecast the driver response of a passenger vehicle to urban and highway driving conditions, including the special case of approaching a signalized intersection with varying signal phases and timing. However, most of the efforts in the literature to calibrate driver models have focused on passenger vehicles.
Technical Paper

A New Approach for a Multi-Fuel, Torque Based ECU Concept using Automatic Code Generation

2001-03-05
2001-01-0267
The software design of this new engine control unit is based on a unique and homogenous torque structure. All input signals are converted into torque equivalents and a torque coordinator determines their influence on the final torque delivered to the powertrain. The basic torque structure is independent on the type of fuel and can be used for gasoline, diesel, or CNG injection systems. This allows better use of custom specific algorithms and facilitates reusability, which is supported by the graphical design tool that creates all modules using automatic code generation. Injection specific algorithms can be linked to the software by simply setting a software switch.
Technical Paper

A Novel Supervisory Control and Analysis Approach for Hybrid Electric Vehicles

2020-04-14
2020-01-1192
There are many methods developed over the past decade to solve the problem of energy management control for hybrid electric vehicles. A novel method is introduced in this paper to address the same problem which reduces the problem to a set of physical equations and maps. In simple terms, this method directly calculates the actual cost or savings in fuel energy from the generation or usage of electric energy. It also calculates the local optimum electric power that yields higher electric fuel savings (EFS) or lower electric fuel cost (EFC) in the fuel energy that is spent for driving the vehicle (which in general does not take the system to the lowest engine Brake Specific Fuel Consumption (BSFC)). Based on this approach, a control algorithm is developed which attempts to approach the global optimum over a drive cycle.
Journal Article

A Numerical Model for Flash Boiling of Gasoline-Ethanol Blends in Fuel Injector Nozzles

2011-09-11
2011-24-0003
Fuels are formulated by a variety of different components characterized by chemical and physical properties spanning a wide range of values. Changing the ratio between the mixture component molar fractions, it is possible to fulfill different requirements. One of the main properties that can be strongly affected by mixture composition is the volatility that represents the fuel tendency to vaporize. For example, changing the mixture ratio between alcohols and hydrocarbons, it is possible to vary the mixture saturation pressure, therefore the fuel vaporization ratio during the injection process. This paper presents a 1D numerical model to simulate the superheated injection process of a gasoline-ethanol mixture through real nozzle geometries. In order to test the influence of the mixture properties on flash atomization and flash evaporation, the simulation is repeated for different mixtures characterized by different gasoline-ethanol ratio.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Technical Paper

A RANS CFD 3D Methodology for the Evaluation of the Effects of Cycle By Cycle Variation on Knock Tendency of a High Performance Spark Ignition Engine

2014-04-01
2014-01-1223
Knocking combustions heavily limits the efficiency of Spark Ignition engines. The compression ratio is limited in the design stage of the engine development, letting to Spark Advance control the task of reducing the odds of abnormal combustions. A detailed analysis of knocking events can help improving engine performance and diagnosis strategies. An effective way is to use advanced 3D CFD (Computational Fluid Dynamics) simulation for the analysis and prediction of combustion performance. Standard 3D CFD approach is based on RANS (Reynolds Averaged Navier Stokes) equations and allows the analysis of the mean engine cycle. However knocking phenomenon is not deterministic and it is heavily affected by the cycle to cycle variation of engine combustions. A methodology for the evaluation of the effects of CCV (Cycle by Cycle Variability) on knocking combustions is here presented, based on both the use of Computation Fluid Dynamics (CFD) tools and experimental information.
Technical Paper

A Simulation-Based Comparison of Different Power Split Configurations with Respect to the System Efficiency

2012-04-16
2012-01-0438
In power-split configuration, the input power is split into two parts, one of which is transmitted from the internal combustion engine through one or more planetary gear(s) to the wheels. The other part is generated as electricity and passes through an electrical variator to assist the driving torque. The latter has the characteristic of poor efficiency. In this simulation study, a comparison among the input power-split, compound power-split, and two mode power-split are discussed. Output power-split is not mentioned in this paper due to its limited applicability in specific vehicles. The idea of selection of the electrical machines is explained: the speed and torque of electrical machines was taken into consideration for the required transmission ratios spread.
Journal Article

Achieving Very Low PN Emissions with an Advanced Multi-Hole Injector Functionality and Adapted Spray Targeting Under High Fuel Pressure Conditions

2014-10-13
2014-01-2605
In the near future, emissions legislation will become more and more restrictive for direct injection SI engines by adopting a stringent limitation of particulate number emissions in late 2017. In order to cope with the combustion system related challenges coming along with the introduction of this new standard, Hitachi Automotive Systems Ltd., Hitachi Europe GmbH and IAV GmbH work collaboratively on demonstrating technology that allows to satisfy EU6c emissions limitations by application of Hitachi components dedicated to high pressure injection (1). This paper sets out to describe both the capabilities of a new high pressure fuel system improving droplet atomization and consequently mixture homogeneity as well as the process of utilizing the technology during the development of a demonstrator vehicle called DemoCar. The Hitachi system consists of a fuel pump and injectors operating under a fuel pressure of 30 MPa.
Technical Paper

Achieving the Max - Potential from a Variable Compression Ratio and Early Intake Valve Closure Strategy by Combination with a Long Stroke Engine Layout

2017-09-04
2017-24-0155
The combination of geometrically variable compression (VCR) and early intake valve closure (EIVC) proved to offer high potential for increasing efficiency of gasoline engines. While early intake valve closure reduces pumping losses, it is detrimental to combustion quality and residual gas tolerance due to a loss of temperature and turbulence. Large geometric compression ratio at part load compensates for the negative temperature effect of EIVC with further improving efficiency. By optimizing the stroke/bore ratio, the reduction in valve cross section at part load can result in greater charge motion and therefore in turbulence. Turbocharging means the basis to enable an increase in stroke/bore ratio, called β in the following, because the drawbacks at full load resulting from smaller valves can be only compensated by additional boosting pressure level.
Journal Article

Acoustic Emission Processing for Turbocharged GDI Engine Control Applications

2015-04-14
2015-01-1622
In the field of passenger car engines, recent research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting particularly stringent exhaust emissions limits. Knock and turbocharger control are two of the most critical factors that influence the achievement of maximum efficiency and satisfactory drivability, for this new generation of engines. The sound emitted from an engine encloses many information related to its operating condition. In particular, the turbocharger whistle and the knock clink are unmistakable sounds. This paper presents the development of real-time control functions, based on direct measurement of the engine acoustic emission, captured by an innovative and low cost acoustic sensor, implemented on a platform suitable for on-board application.
Journal Article

Active Thermal Management with a Dual Mode Coolant Pump

2013-04-08
2013-01-0849
A GT-suite commercial code was used to develop a fully integrated model of a light duty commercial vehicle with a V6 diesel engine, to study the use of a BorgWarner dual mode coolant pump (DMCP) in active thermal management of the vehicle. An Urban Dynamometer Driving Schedule (UDDS) was used to validate the simulation results with the experimental data. The conventional mechanical pump from the validated model was then replaced with the dual mode coolant pump. The control algorithm for the pump was based on controlling the coolant temperature with pump speed. Maximum electrical speed of the pump and the efficiency of the pump were used to determine whether the pump should run in mechanical or electrical mode. The model with the dual mode coolant pump was simulated for the UDDS cycle to demonstrate the effectiveness of control strategy.
Technical Paper

Advanced Thermal Management Strategies

2013-10-07
2013-36-0542
The paper presents the results of applying an advanced thermal management approach to a light duty commercial vehicle. The relative benefit of various thermal components, layouts and control strategies is discussed. Thermal performance along with associated fuel economy improvements are shown over various test cycles including the FTP, NEDC and US06. Results are given for a GT-Suite simulation as well as on vehicle.
Technical Paper

Advanced Thermal Management of a Light Duty Diesel Vehicle

2013-04-08
2013-01-0546
The paper presents a thermal management development capability and approach that was put in place to understand the relative benefit of various thermal components, layouts and control strategies. The use of the approach on a modern diesel powered vehicle is given. Thermal performance along with associated fuel economy improvements are shown over various test cycles including the FTP and US06. Results are given for a GT-Suite simulation as well as on vehicle.
Technical Paper

Advanced Turbocharger Model for 1D ICE Simulation - Part I

2013-04-08
2013-01-0581
Standard compressor and turbine maps obtained from steady-state test bench measurements are not sufficient for assessing transient turbocharger behavior. This also makes them inappropriate for gauging combustion-engine response and fuel consumption. Nor do they allow for the widely differing operating conditions which, apart from aerodynamics, have a major influence on heat transfer and turbocharger efficiency. This paper looks at a more complex approach of modeling the turbocharger as well developing appropriate measurement methods (“advanced turbocharger model”). This includes non-destructive measurements under various heat transfer conditions to define the turbocharger's adiabatic behavior needed to describe charge-air pressure increase in the compressor and engine exhaust gas backpressure from the turbine for transient engine operation.
Technical Paper

Air System Control for Advanced Diesel Engines

2007-04-16
2007-01-0970
In order to satisfy environmental regulations while maintaining strong performance and excellent fuel economy, advanced diesel engines are employing sophisticated air breathing systems. These include high pressure and low pressure EGR (Hybrid EGR), intake and exhaust throttling, and variable turbine geometry systems. In order to optimize the performance of these sub-systems, system level controls are necessary. This paper presents the design, benefits and test results of a model-based air system controller applied to an automotive diesel engine.
Technical Paper

Air System Management to Improve a Diesel Engine

2011-08-30
2011-01-1829
The paper presents the structure of an air system controller and its application to a modern boosted dual loop EGR Diesel engine. Results over a U.S. FTP cycle which show improvements in emissions and fuel consumption with future opportunities for increased performance are discussed. A recent application of the controller is also shown where standard engine sensors are eliminated to reduce cost and their function is replaced with in-cylinder pressure measurement combined with signal processing techniques.
Technical Paper

An Investigation of Mixture Formation Processes During Start-Up of a Natural Gas Powered SI Engine

1998-05-04
981387
The mixture formation processes of methane and air in an optical access engine operating steadily at 200 RPM have been explored in order to study charge inhomogeneity in a natural gas powered spark ignition engine during transient engine cranking. Planar Laser Induced Fluorescence has been used to create fuel/air equivalence ratio maps as a function of injection timing for various image planes at intervals throughout the intake and compression strokes. The work has been done using a Honda VTEC-E engine head that features port injection, four valves per cylinder, a pentroof style combustion chamber for the generation of tumble motion, and one nearly deactivated intake valve to generate swirl motion at low engine speeds in order to enhance mixing.
Technical Paper

Analysis of Diesel Engine Emissions Reduction by Late Intake Valve Close and VTG Turbocharger Using 1-D Simulation

2008-10-06
2008-01-2444
A 1-D GT-Power model based investigation has been carried out to identify the impact of late intake valve closing (LIVC) on fuel economy and emission reduction of a modern small bore diesel engine. The diesel engine examined employed a variable turbine geometry (VTG) turbocharger with air-to-air charge cooler, cooled low pressure exhaust gas re-circulation (LP-EGR), and cooled high pressure exhaust gas re-circulation (HP-EGR). The LIVC system investigated varied the closing time of the intake valve by increasing or decreasing the dwell at the maximum valve lift point. This paper describes how the fuel economy and NOx emission of the diesel engine were affected by varying the intake valve closing time. The intake valve closing time was delayed by as much as 60 degrees.
Technical Paper

Application of Acoustic and Vibration-Based Knock Detection Techniques to a High Speed Engine

2017-03-28
2017-01-0786
Knock control systems based on engine block vibrations analysis are widely adopted in passenger car engines, but such approach shows its main limits at high engine speeds, since knock intensity measurement becomes less reliable due to the increased background mechanical noise. For small two wheelers engines, knock has not been historically considered a crucial issue, mainly due to small-sized combustion chambers and mixture enrichment. Due to more stringent emission regulations and in search of reduced CO2 emissions, an effective on-board knock controller acquires today greater importance also for motorcycle applications, since it could protect the engine when different fuel types are used, and it could significantly reduce fuel consumption (by avoiding lambda enrichment and/or allowing higher compression ratios to be adopted). These types of engines typically work at high rotational speeds and the reduced signal to noise ratio makes knock onset difficult to identify.
X