Refine Your Search

Topic

Author

Search Results

Video

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-06-18
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system. Presenter Yan Zhang, Brunel University
Technical Paper

Alcohol-Based Fuels in High Performance Engines

2007-01-23
2007-01-0056
The paper discusses the use of alcohol fuels in high performance pressure-charged engines such as are typical of the type being developed under the ‘downsizing’ banner. To illustrate this it reports modifications to a supercharged high-speed sports car engine to run on an ethanol-based fuel (ethanol containing 15% gasoline by volume, or ‘E85’). The ability for engines to be able to run on alcohol fuels may become very important in the future from both a global warming viewpoint and that of security of energy supply. Additionally, low-carbon-number alcohol fuels such as ethanol and methanol are attractive alternative fuels because, unlike gaseous fuels, they can be stored relatively easily and the amount of energy that can be contained in the vehicle fuel tank is relatively high (although still less than when using gasoline).
Technical Paper

An Investigation Into Transient Diesel Spray Development Using High Speed Imaging In A Novel Optical Pressure Chamber

2011-08-30
2011-01-1836
The fuel economy and emissions performance of a Diesel engine is strongly influenced by the fuel injection process. This paper presents early results of an experimental investigation into diesel spray development carried out in a novel in-house developed optical pressure chamber capable of operating at pressure up to 50 bar and temperatures up to 900 K. The spatial evolution of a diesel spray tends to experience many transitory macroscopic phenomena that directly influence the mixing process. These phenomena are not considered highly reproducible and are extremely short lived, hence recording and understanding these transient effects is difficult. In this study, high-speed backlight-illuminated imaging has been employed in order to capture the transient dynamics of a short signal duration diesel spray injected into incremental back pressures and temperatures reaching a maximum of 10 bar and 473 K respectively.
Technical Paper

Analyzing the Limitations of the Rider and Electric Motorcycle at the Pikes Peak International Hill Climb Race

2019-04-02
2019-01-1125
This paper describes a post-race analysis of team KOMMIT EVT’s electric motorcycle data collected during the 2016 Pikes Peak International Hill Climb (PPIHC). The motorcycle consumed approximately 4 kWh of battery energy with an average and maximum speed of 107 km/h and 149 km/h, respectively. It was the second fastest electric motorcycle with a finishing time of 11:10.480. Data was logged of the motorcycle’s speed, acceleration, motor speed, power, currents, voltages, temperatures, throttle position, GPS position, rider’s heart rate and the ambient environment (air temperature, pressure and humidity). The data was used to understand the following factors that may have prevented a faster time: physical fitness of the rider, thermal limits of the motor and controller, available battery energy and the sprocket ratio between the motor and rear wheel.
Technical Paper

Characterisation of Spray Development from Spark-Eroded and Laser-Drilled Multi-Hole Injectors in an Optical DISI Engine and in a Quiescent Injection Chamber

2015-09-01
2015-01-1903
This paper addresses the need for fundamental understanding of the mechanisms of fuel spray formation and mixture preparation in direct injection spark ignition (DISI) engines. Fuel injection systems for DISI engines undergo rapid developments in their design and performance, therefore, their spray breakup mechanisms in the physical conditions encountered in DISI engines over a range of operating conditions and injection strategies require continuous attention. In this context, there are sparse data in the literature on spray formation differences between conventionally drilled injectors by spark erosion and latest Laser-drilled injector nozzles. A comparison was first carried out between the holes of spark-eroded and Laser-drilled injectors of same nominal type by analysing their in-nozzle geometry and surface roughness under an electron microscope.
Technical Paper

Characterization of Flame Development with Hydrous and Anhydrous Ethanol Fuels in a Spark-Ignition Engine with Direct Injection and Port Injection Systems

2014-10-13
2014-01-2623
This paper presents a study of the combustion mechanism of hydrous and anhydrous ethanol in comparison to iso-octane and gasoline fuels in a single-cylinder spark-ignition research engine operated at 1000 rpm with 0.5 bar intake plenum pressure. The engine was equipped with optical access and tests were conducted with both Port Fuel Injection (PFI) and Direct Injection (DI) mixture preparation methods; all tests were conducted at stoichiometric conditions. The results showed that all alcohol fuels, both hydrous and anhydrous, burned faster than iso-octane and gasoline for both PFI and DI operation. The rate of combustion and peak cylinder pressure decreased with water content in ethanol for both modes of mixture preparation. Flame growth data were obtained by high-speed chemiluminescence imaging. These showed similar trends to the mass fraction burned curves obtained by in-cylinder heat release analysis for PFI operation; however, the trend with DI was not as consistent as with PFI.
Technical Paper

Combining Unthrottled Operation with Internal EGR under Port and Central Direct Fuel Injection Conditions in a Single Cylinder SI Engine

2009-06-15
2009-01-1835
This experimental work was concerned with the combination of internal EGR with an early inlet valve closure strategy for improved part-load fuel economy. The experiments were performed in a new spark-ignited thermodynamic single cylinder research engine, equipped with a mechanical fully variable valvetrain on both the inlet and exhaust. During unthrottled operation at constant engine speed and load, increasing the mass of trapped residual allowed increased valve duration and lift to be used. In turn, this enabled further small improvements in gas exchange efficiency, thermal efficiency and hence indicated fuel consumption. Such effects were quantified under both port and homogeneous central direct fuel injection conditions. Shrouding of the inlet ports as a potential method to increase in-cylinder gas velocities has also been considered.
Technical Paper

Combustion Characteristics and Exhaust Emissions of a Direct Injection SI Engine with Pure Ethanol and Methanol in Comparison to Gasoline

2022-08-30
2022-01-1089
The automobile industry is under intense pressure to reduce carbon dioxide (CO2) emissions of vehicles. There is also increasing pressure to reduce the other tail-pipe emissions from vehicles to combat air pollution. Electric powertrains offer great potential for eliminating tailpipe CO2 and all other tailpipe emissions. However, current battery technology and recharging infrastructure still present limitations for some applications, where a continuous high-power demand is required. Furthermore, not all markets have the infrastructure to support a sizeable electric fleet and until the grid energy generation mix is of a sufficiently low carbon intensity, then significant vehicle life-cycle CO2 savings could not be realized by the Battery Electric Vehicles. This investigation examines the effects of combustion, efficiencies, and emissions of two alcohol fuels that could help to significantly reduce CO2 in both tailpipe and the whole life cycle.
Technical Paper

Comparison between Unthrottled, Single and Two-valve Induction Strategies Utilising Direct Gasoline Injection: Emissions, Heat-release and Fuel Consumption Analysis

2008-06-23
2008-01-1626
For a spark-ignition engine, the parasitic loss suffered as a result of conventional throttling has long been recognised as a major reason for poor part-load fuel efficiency. While lean, stratified charge, operation addresses this issue, exhaust gas aftertreatment is more challenging compared with homogeneous operation and three-way catalyst after-treatment. This paper adopts a different approach: homogeneous charge direct injection (DI) operation with variable valve actuations which reduce throttling losses. In particular, low-lift and early inlet valve closing (EIVC) strategies are investigated. Results from a thermodynamic single cylinder engine are presented that quantify the effect of two low-lift camshafts and one standard high-lift camshaft operating EIVC strategies at four engine running conditions; both, two- and single-inlet valve operation were investigated. Tests were conducted for both port and DI fuelling, under stoichiometric conditions.
Journal Article

Development of a Fast-Acting, Time-Resolved Gas Sampling System for Combustion and Fuels Analysis

2016-04-05
2016-01-0791
Development of new fuels and engine combustion strategies for future ultra-low emission engines requires a greater level of insight into the process of emissions formation than is afforded by the approach of engine exhaust measurement. The paper describes the development of an in-cylinder gas sampling system consisting of a fast-acting, percussion-based, poppet-type sampling valve, and a heated dilution tunnel; and the deployment of the system in a single cylinder engine. A control system was also developed for the sampling valve to allow gas samples to be extracted from the engine cylinder during combustion, at any desired crank angle in the engine cycle, while the valve motion was continuously monitored using a proximity sensor. The gas sampling system was utilised on a direct injection diesel engine co-combusting a range of hydrogen-diesel fuel and methane-diesel fuel mixtures.
Technical Paper

Development of a Fuelling System to Reduce Cold-Start Hydrocarbon Emissions in an SI Engine

1996-05-01
961119
An air-assisted fuel vaporiser (AAFV), designed to replace the conventional fuelling system has been tested on a 3.0-litre development engine under simulated cold-Start conditions. Providing the cold engine with pre-vaporised fuel removed the need for an enriched mixture during start-up. Comparisons between the AAFV and standard fuelling systems were performed. Engine-out hydrocarbon (HC) exhaust emissions were measured during cold-start and the ensuing two minutes. Fuel spray characterisation was also conducted using a steady flow test rig designed to mimic inlet port conditions of air flow and manifold pressure over a wide range of engine operation.
Technical Paper

Development of a Two-Stroke/Four-Stroke Switching Gasoline Engine - The 2/4SIGHT Concept

2005-04-11
2005-01-1137
The pursuit of flexibility is a recurring theme in engine design and development. Engines that are able to switch between the two-stroke operating cycle and four-stroke operation promise a great leap in flexibility. Such 2S-4S engines could then continuously select the optimum operating mode - including HCCI/CAI combustion - for fuel efficiency, emissions or specific output. With recent developments in valvetrain technology, advanced boosting devices, direct fuel injection and engine control, the 2S-4S engine is an increasingly real prospect. The authors have undertaken a comprehensive feasibility study for 2S-4S gasoline engines. This study has encompassed concept and detailed design, design analysis, one-dimensional gas dynamics simulation, three-dimensional computational fluid dynamics, and vehicle simulation. The resulting 2/4SIGHT concept engine is a 1.04 l in-line three-cylinder engine producing 230 Nm and 85 kW.
Technical Paper

Effect of Impinging Airflow on the Near Nozzle Characteristics of a Gasoline Spray from a Pressure-Swirl Atomiser

2006-10-16
2006-01-3343
The effects of impinging airflow on the near nozzle characteristics of an inwardly opening, high pressure-swirl atomiser are investigated in an optically-accessed, steady-state flow rig designed to emulate the intake flow of a typical, side-injected, 4-valve gasoline direct-injection combustion system. The results indicate that the impinging airflow has a relatively minor effect on the initial break-up of the fuel spray. However, the secondary break-up of the spray, i.e. the break-up of liquid ligaments, the spatial distribution of droplets within the spray and the location of the spray within the cylinder are significantly affected by the impinging air.
Technical Paper

Effect of Injection Timing on Mixture and CAI Combustion in a GDI Engine with an Air-Assisted Injector

2006-04-03
2006-01-0206
The application of controlled auto-ignition (CAI) combustion in gasoline direct injection (GDI) engines is becoming of more interest due to its great potential of reducing both NOx emissions and fuel consumption. Injection timing has been known as an important parameter to control CAI combustion process. In this paper, the effect of injection timing on mixture and CAI combustion is investigated in a single-cylinder GDI engine with an air-assisted injector. The liquid and vapour phases of fuel spray were measured using planar laser induced exciplex fluorescence (PLIEF) technique. The result shows that early injection led to homogeneous mixture but late injection resulted in serious stratification at the end of compression. CAI combustion in this study was realized by using short-duration camshafts and early closure of the exhaust valves. During tests, the engine speed was varied from 1200rpm to 2400rpm and A/F ratio from stoichiometric to lean limit.
Journal Article

Effect of the Molecular Structure of Individual Fatty Acid Alcohol Esters (Biodiesel) on the Formation of Nox and Particulate Matter in the Diesel Combustion Process

2008-06-23
2008-01-1578
Biodiesel is a renewable fuel which can be used as a direct replacement for fossil Diesel fuel as a calorific source in Diesel Engines. It consists of fatty acid mono-alkyl esters, which are produced by the trans-esterification reaction of plant oils with monohydric alcohols. The Plant oils and alcohols can both be derived from biomass, giving this fuel the potential for a sustainable carbon dioxide neutral life-cycle, which is an important quality with regard to avoiding the net emission of anthropogenic greenhouse gases. Depending on its fatty ester composition, Biodiesel can have varying physical and chemical properties which influence its combustion behaviour in a Diesel engine. It has been observed by many researchers that Biodiesel can sometimes lead to an increase in emissions of oxides of nitrogen (NOx) compared to fossil Diesel fuel, while emitting a lower amount of particulate mass.
Technical Paper

Effects of Fuel Injection Pressure in an Optically-Accessed DISI Engine with Side-Mounted Fuel Injector

2001-05-07
2001-01-1975
This paper presents the results of an experimental study into the effects of fuel injection pressure on mixture formation within an optically accessed direct-injection spark-ignition (DISI) engine. Comparison is made between the spray characteristics and in-cylinder fuel distributions due to supply rail pressures of 50 bar and 100 bar subject to part-warm, part-load homogeneous charge operating conditions. A constant fuel mass, corresponding to stoichiometric tune, was maintained for both supply pressures. The injected sprays and their subsequent liquid-phase fuel distributions were visualized using the 2-D laser Mie-scattering technique. The experimental injector (nominally a hollow-cone pressure-swirl design) was seen to produce a dense filled spray structure for both injection pressures under investigation. In both cases, the leading edge velocities of the main spray suggest the direct impingement of liquid fuel on the cylinder walls.
Technical Paper

Effects of Ignition Timing on CAI Combustion in a Multi-Cylinder DI Gasoline Engine

2005-10-24
2005-01-3720
Having achieved CAI-combustion in a 4-cylinder four-stroke gasoline DI engine the effects of ignition timing on the CAI combustion process were investigated through the introduction of spark. By varying the start of fuel injection, the effects on Indicated Specific values for NOx, HC, CO emissions and fuel consumption were investigated for CAI combustion. The CAI combustion process was then assisted by spark and three different ignition timings were studied. The effect on engine performance and the emission specific values were investigated further. The engine speed was maintained at 1500 rpm and lambda was kept constant at 1.2. It was found that with spark-assisted CAI, IMEP and ISNOx values increased as compared with typical CAI. ISHC values were lower for spark-assisted CAI as compared to typical CAI. Heat release data was studied to better understand this phenomenon.
Technical Paper

Effects of Injection Timing on Liquid-Phase Fuel Distributions in a Centrally-Injected Four-Valve Direct-Injection Spark-Ignition Engine

1998-10-19
982699
An experimental study was carried out to investigate the effects of fuel injection timing on the spatial and temporal development of injected fuel sprays within a firing direct-injection spark-ignition (DISI) engine. It was found that the structure of the injected fuel sprays varied significantly with the timing of the injection event. During the induction stroke and the early part of the compression stroke, the development of the injected fuel sprays was shown to be controlled by the state of the intake and intake-generated gas flows at the start of injection (SOI).The relative influence of these two flow regimes on the injected fuel sprays during this period was also observed to change with injection timing, directly affecting tip penetration, spray/wall impingement and air-fuel mixing. Later in the compression stroke, the results show the development of the injected fuel sprays to be dominated by the increased cylinder pressure at SOI.
Technical Paper

Effects of Injection Timing on the Exhaust Emissions of a Centrally-Injected Four-Valve Direct-Injection Spark-Ignition Engine

1998-10-19
982700
A study to investigate the influence of fuel injection timing on exhaust emissions from a single-cylinder direct-injection spark-ignition (DISI) research engine was performed. Experimental results were obtained for carbon monoxide (CO), unburned hydrocarbon (HC), and oxides of nitrogen (NOx). Images showing the variation of liquid-phase fuel distribution with changing injection timing were obtained in a firing optically-accessed engine of similar design. A correlation between measured emissions and observed liquid-phase fuel distribution was performed. This correlation was supported by development of phenomenological models that permit explanation of the variation of CO, HC, and NOx emissions with changes in air-fuel mixture preparation.
Technical Paper

Effects of Mechanical Turbo Compounding on a Turbocharged Diesel Engine

2013-03-25
2013-01-0103
This paper presents the simulation study on the effects of mechanical turbo-compounding on a turbocharged diesel engine. A downstream power-turbine has been coupled to the exhaust manifold after the main turbocharger, in the aim to recover waste heat energy. The engine in the current study is Scania DC13-06, which 6 cylinders and 13 litre in capacity. The possibilities, effectiveness and working range of the turbo compounded system were analyzed in this study. The system was modeled in AVL BOOST, which is a one dimensional (1D) engine code. The current study found that turbo compounding could possibly recover on average 11.4% more exhaust energy or extra 3.7kW of power. If the system is mechanically coupled to the engine, it could increase the average engine power by up to 1.2% and improve average BSFC by 1.9%.
X