Refine Your Search

Topic

Search Results

Technical Paper

A Comparison Study of Car-to-Pedestrian and Car-to-E-Bike Accidents: Data Source: The China In-Depth Accident Study (CIDAS)

2014-04-01
2014-01-0519
The aim of the study was to investigate the difference between car-to-e-bikes and car-to-pedestrian accidents. The China In-depth Accident Study (CIDAS) database was searched from 2011 to 2013 for pedestrians and e-bikes struck by car, van and SUV fronts, which resulted in 104 pedestrian and 85 e-bike cases where information was sufficient for in-depth analysis. Reconstruction by PC-Crash was performed for all of the sampled cases. Pre-crash parameters were calculated by a MATLAB code. Focus was on prototypical accident scenarios and causes; speed as well as possible prevention countermeasures. It has been shown that traffic light violations, road priority violations, and unsure safety (these situations included misjudgments, unpreparedness, proximity to other road users, inappropriate speeds, etc.…) are the main causes in both the VRU groups. Distinctions were found for aspects of car collision speed, accident scenario, distribution of head contact points and so on.
Technical Paper

A New Flux Weakening Control Strategy for IPMSM (Interior Permanent Magnet Synchronous Machine) in Automotive Applications

2020-04-14
2020-01-0466
As one of the core components of electric vehicles(EV), the drive motor system has a significant impact on the EV operation performance. The interior permanent magnet synchronous motor (IPMSM) has a wide range of applications in EV, due to its high efficiency, high power density, high torque current and wide speed range. In the field of EV, motor control system is required to have a high operating range. IPMSM operates at constant torque mode below rated speed and constant power mode above rated speed. The back electromotive force(Back-EMF) generated by the rotor in the constant power mode causes the inverter output voltage to saturate. Therefore, it is necessary to ensure that the controller is still operating in the linear region by applying a flux weakening(FW) current to the stator.
Technical Paper

An EV Charging Navigation Scheduling Strategy Based on Charging Power Adjustment

2021-12-14
2021-01-7021
With the continuous development of the electrical vehicles (EVs), the electric power network and transportation network are interconnected by EVs which require a coordinated operation of the two networks. In view of these coupled networks, this paper proposes a charging navigation strategy for EVs based on charging power adjustment, which can not only provide the navigation path with the shortest total operational time for EVs from the origin node to the completion of charging, but also effectively reduce load fluctuations in the electric power system. In the electric power system, an innovative optimization strategy for adjusting the EV charging power distribution is proposed, which can adjust the charging power in a timely and effective manner according to the response of EV charging. The multi-objective particle swarm optimization (MOPSO) algorithm and the improved Dijkstra algorithm are used for solving the obtained the EV charging power adjustment plan and charging paths.
Technical Paper

An Optimization Approach to Conduction Emission Test of T-BOX

2018-08-07
2018-01-1643
T-BOX can manage the vehicle’s operation data and position data, and provide the following functions, positioning, vehicle status, motor data, BMS working status, charging status and status alarm, which may effectively promote the development of electric vehicle. Meanwhile, it may bring a series of problems, especially the electromagnetic compatibility (EMC) problems. In this paper, for the exceed standard limits problem of a particular T-BOX sample in radiation emission (RE) and conducted emissions(CE) test process, π filter is designed and added to the positive polar and negative polar of power supply based on the analysis of hardware circuit. The conduction emission test results of T-BOX after optimized can meet the requirements of GB/T 18655-2010 Vehicles, boats and internal combustion engines-Radio disturbance characteristics-Limits and methods of measurement for the protection of on-board receiver standard.
Technical Paper

Battery Management System Based on AURIX Multi-Core Architecture

2019-04-02
2019-01-1310
Battery management system (BMS) is the core component of the new energy vehicle battery system. With the increase of energy density of new energy vehicle battery, its control algorithm becomes more and more complex, and the work of the battery management system will be heavier. In order to solve the limits, the hardware, software and control strategy model of battery management system are developed based on AURIX multi-core microcontroller. The microprocessor control unit is developed by using dual-core chip, which meets the functional safety requirements. Dual-core processing of control strategy and individual information acquisition are realized, and the processing efficiency is improved. A four-tier software architecture of battery management system is developed to handle the Dual-core processing. The graphical development of battery management system strategy model is realized by using MATLAB / Simulink.
Technical Paper

CATARC New Type Drivetrain NVH Test Facility

2019-04-02
2019-01-0788
A vehicle’s NVH performance has a significant impact on the user experience of the driver and passengers. About one-third of the vehicle complaints are related to NVH performance. As the core component of the vehicle, the drivetrain’s NVH characteristics have a significant impact on vehicle comfort. How to reliably and stably reproduce the specific condition of the whole vehicle through the test method, and obtain the highly consistent objective data for analyzing and improving the NVH characteristics of the drivetrain is of great significance in engineering. For this purpose, China Automotive Technology Research Center Co., Ltd. (CATARC) designed and built a new type drivetrain NVH test facility, which consists of five dynamometers, and can carry horizontal/vertical, front/rear drive or four-wheel drive structures including powertrain, transmission, and rear axle, or even a whole vehicle.
Technical Paper

Characteristics and Casualty Analysis of Two- Wheeler Accidents in China, Data Source: The China In-Depth Accident Study (CIDAS)

2018-04-03
2018-01-1052
The two-wheeler is a vehicle that runs on two wheels, which is classified as motorcycle, electric-bicycle, and bicycle in this research. China has the largest number of two-wheelers and relevant accidents in the world. The two-wheeler riders have a high level of vulnerability, creating a significant necessity to better understand the characteristics according to the road-user group. The objective of this paper is to study the characteristics and analyze the causes of two-wheeler accidents in China using the CIDAS (China In-Depth Accident Study) Database. 2012 cases of two-wheeler accidents with riders injured or dead were collected from the CIDAS Database from 5 cities (Changchun, Beijing, Weihai, Ningbo and Foshan) in China over a period of 5 years (2011.07-2016.06).
Technical Paper

Deterioration Characteristic of Catalyzed DPF Applied on Diesel Truck Durable Ageing

2018-09-10
2018-01-1701
In this paper, it was researched the degradation characteristics of catalytic performance of three kinds of DPFs (C1, C2 and C3, with precious metal concentrations being 15, 25 and 35 g/ft3 respectively) after diesel truck aging. It is found out that the crystallinity of three kinds of DPF samples (Used) in full vehicle aging was higher than that of fresh samples (Fresh) and aged samples (Aged) in the laboratory. Compared with Fresh samples, the concentration of Pt atom in precious metal on the surface of Aged and Used samples tends to decrease in most cases. Activities to CO and C3H8 of Aged and Used samples of three kinds of DPFs had all been degraded, and activity degradation showed a substantial correlation with concentration reduction rate of precious metal on the carrier surface. NO2 productivity of Used samples all rose. Crystallinity of DPF samples after full vehicle aging in Inlet, Middle and Outlet areas successively increased.
Technical Paper

Development of Fuel Consumption Test Method Standards for Heavy-Duty Commercial Vehicles in China

2011-09-13
2011-01-2292
To restrain the environmental and energy problems caused by oil consumption and improve fuel economy of heavy-duty commercial vehicles, China started developing relevant standards from 2008. This paper introduces the background and development of China's national standard “Fuel consumption test methods for heavy-duty commercial vehicles”, and mainly describes the test method schemes, driving cycle and weighting factors for calculating average fuel consumption of various vehicle categories. The standard applies to heavy-duty vehicles with the maximum design gross mass greater than 3500 kg, including semi-trailer tractors, common trucks, dump trucks, city buses and common buses. The standard adopts the C-WTVC driving cycle which is adjusted on the basis of the World Transient Vehicle Cycle[1, 2] and specifies weighting factors of urban, rural and motorway segments for different vehicle categories.
Technical Paper

Development of an Advanced Motor Control System for Electric Vehicles

2019-04-02
2019-01-0597
Electric vehicles are considered as one of the most popular way to decrease the consumption of petroleum resources and reduce environmental pollutions. Motor control system is one of the most important part of electric vehicles. It includes power supply module, IGBT driver, digital signal processing (DSP) controller, protection adjustment module, and resolver to digital convertor. To implement the control strategies on motor control system, a lot of practical aspects need to be taken into accounts. It includes setup of the initial excitation current, consistency of current between motor and program code, over-modulation, field weakening control, current protection, and so on. In this paper, an induction motor control system for electric vehicles is developed based on DSP. The control strategy is based on the field-oriented control (FOC) and space vector pulse width modulation (SVPWM).
Technical Paper

Dynamic Correction Strategy for SOC Based on Discrete Sliding Mode Observer

2019-04-02
2019-01-1312
Battery state estimation is one of the most important decision parameters for lithium battery energy management. It plays an important role in improving battery energy utilization, ensuring battery safety and enhancing system reliability. This paper is proposed to provide a dynamic correction of SOC in the full working condition, including static condition and dynamic condition. Based on the Coulomb-counting method, the current SOC value of the battery is calculated. Under the static conditions, the open circuit voltage of the battery is used to directly collect the initial SOC. Under the dynamic working conditions, the open circuit voltage of the battery is estimated by the sliding mode observer. Based on the deviation between the calculated and estimated values of the open circuit voltage, the current coefficient of the Coulomb-counting method is dynamically corrected by PI strategy.
Technical Paper

Effect of Clamping Load on the Performance and Contact Pressure of PEMFC Stack

2018-04-03
2018-01-1310
In the assembling process of proton exchange membrane fuel cell (PEMFC) stack, the clamping load is known to have direct effect on the contact pressure of interfaces. Compression on the membrane electrode assembly (MEA) results in change in gas diffusion layer (GDL), porosity and electrical resistance, thus affecting the performance, durability and reliability of the PEMFC stack. In this paper, the relation between clamping load and performance of PEMFC stack was obtained by experimental study, and the influence of clamping load on the contact pressure of MEAs was analyzed by finite element analysis. The performance test rig was established and the approach of polarization curve testing was introduced. Both the effect of magnitude and distribution of the bolt torques on the performance were taken into account. The finite element model was adopted to figure out the magnitude and uniformity of contact pressure of MEAs, which provides a new angle to understand the experimental results.
Technical Paper

Evaluation of External Short-Circuit Safety of NCM/C Li-Ion Power Battery under Different State of Health

2020-04-14
2020-01-0454
With the increasing frequency of fire incidents of electric vehicles, the safety of power batteries has attracted more and more attention. At present, the research on the safety of power batteries is mainly focused on fresh batteries. As the state of health of batteries deepens, how the safety of the battery evolves is not clear enough so far. This paper analyzes the external short-circuit safety of a NCM/C rectangular battery under different state of charges. The results show that when the cycle number is less than 800, the maximum temperature of the battery during short-circuit is below 130 °C. The main failure mode of the battery is bulging in volume or opening of the explosion-proof valve and there is no obvious regularity between the failure mode with the cycle life. However, when the cycle number reaches 1000, the battery goes into thermal runaway during the safety test.
Technical Paper

Numerical Analysis of Underbody Diffusers with Different Angles and Channels

2019-04-02
2019-01-0668
The underbody diffusers are used widely in race cars to improve the flow field structure at the bottom of the car and provide enough downforce. In recent years, passenger cars have begun to use bottom diffuser to improve aerodynamic characteristics, so as to reduce drag and increase downforce. In this paper, the aerodynamic characteristics of the bus with different underbody diffuser angles and channel numbers are studied by numerical simulation analysis. Firstly, the aerodynamics of the bus under different diffuser inlet and outlet angles are studied, and then an optimal inlet and outlet angle is determined based on the simulation results. Then, using this angle as a constant, the 2, 3, and 4 channel numbers were chosen as the diffuser channel variables to study the influence of the multiple-channel diffusers on the aerodynamic drag of the vehicle.
Technical Paper

Passenger Car 25% Overlapping Collision Accident Study Base on CIDAS

2018-08-07
2018-01-1595
With the development of vehicle technologies, vehicle safety is much better than before, many companies put research focus on harder accident scenarios. The 25% overlapping collision is considered as one type of most dangerous collision, this paper study this type accidents base on CIDAS database. Paper showed 7 scenarios appeared frequency in China, 11, 12, 1 o’clock are main impact direction. High way and freeway are the main places, and the head, thorax and lower extremities were the main sites of injury.
Technical Paper

Research on Bottom Collision of Battery Pack Based on the First Force Point

2024-04-09
2024-01-2065
The rapid advancement of new energy vehicle technology has led to the widespread placement of battery packs at the bottom of vehicles. However, there is a lack of corresponding regulations and standards to guide aspects related to vehicle bottom safety. This lack of guidance obscures the relative importance of various parameters impacting the structural safety of battery packs under dynamic impact conditions. Consequently, research on battery pack bottom collisions holds practical significance and offers valuable reference material. This study proposed a method based on the first collision point to examine the impact of bottom collisions on the mechanical safety performance of battery pack bottoms. A finite element model of the battery pack was established to investigate the effects of different impact types.
Technical Paper

Research on Dynamic Load of Belgian Event Based on Virtual Proving Ground

2019-04-02
2019-01-0170
The fatigue load spectrum of the physical proving ground is the necessary input for fatigue life analysis of vehicle parts and components. It is usually obtained by Road Load Data Acquisition (RLDA) and loads decomposition using multi-body dynamics tools. Virtual Proving Ground (VPG) methodology is gradually replacing this technical strategy. The belgian road is the typical event in durability test, in this paper, the flexible body and FTire model are applied to the vehicle multi-body dynamics model in order to improve the simulation accuracy. The result shows that all the wheel center force, shock absorber displacement and axial force acquired by VPG simulation have excellent correlation with real vehicle measured data. It is also proved that the virtual proving ground technology is a reliable and effective method to obtain the fatigue load spectrum in the early stage of development.
Technical Paper

Research on Electromagnetic Compatibility for Wireless Charging System of Electric Vehicles

2019-11-04
2019-01-5057
Currently, there are no specific standards on electromagnetic compatibility (EMC) test for wireless charging system of electric vehicles (EVs). However, the EMC test items have been summarized in some international standards. And the national standard is under developing. In order to support the formulation of corresponding national standards and regulations, promote the rapid development of EVs industry and support the implementation of the national strategy of new energy vehicles (NEVs) and intelligent network vehicle, we carry out the EMC test for wireless charging systems. In this paper, the wireless charging system of EVs is taken as the research object, which can also been called equipment under test (EUT). Firstly, an introduction of the research status was summarized. And then, the influence parameters such as output power and offset are analyzed. Based on the analysis, the EMC test was implemented to evaluate the EMC performance of EUT.
Technical Paper

Research on Intelligent Vehicle Index and Evaluation Method

2018-08-07
2018-01-1634
As automobiles are gradually transforming from independent mechanical units to network nodes with intelligent and networked functions, the functions and performance evaluation of intelligent vehicles is facing the new challenges. At present, China has initially classified the level of intelligent vehicles on the basis of SAE, but has not yet formed a scientific, rigorous and comprehensive evaluation system. Therefore, this paper proposes the detailed intelligent evaluation ideas of intelligent vehicles in different levels from 0 to 5 and sets up a "Trinity" evaluation system covering professional evaluation, practical evaluation and market evaluation. Then, with the development progress of intelligent vehicles, we will set up the hierarchical structure of evaluation indicators basing on automated intelligence and connected intelligence.
Technical Paper

Research on Test Method for Shielding Effectiveness to Cable of Vehicles

2019-11-04
2019-01-5070
With the development of electric vehicles (EVs), hybrid electric vehicles (HEVs) and fuel cell vehicles (FCVS), high voltage and large-current are applied to cables. Therefore, it is important to avoid electromagnetic compatibility (EMC) problems of cables, and a measurement methods is necessary for the shielding effectiveness of shielding cables. This paper discusses the existing test methods of cable shielding effectiveness and summarizes the main problems and deficiencies. Then, according to the practical requirements of high voltage cable testing, the direct injection method based on the national standard GB/T 18655-2018 (modified international standard CISPR 25) is proposed. The test method is verified by constructing a practical test platform.
X