Refine Your Search

Topic

Author

Search Results

Technical Paper

A Hybrid Regenerative Water Recovery System for Lunar/Mars Life Support Applications

1992-07-01
921276
Long duration manned space missions will require integrated biological and physicochemical processes for recovery of resources from wastes. This paper discusses a hybrid regenerative biological and physicochemical water recovery system designed and built at NASA's Crew and Thermal Systems Division (CTSD) at Johnson Space Center (JSC). The system is sized for a four-person crew and consists of a two-stage, aerobic, trickling filter bioreactor; a reverse osmosis system; and a photocatalytic oxidation system. The system was designed to accommodate high organic and inorganic loadings and a low hydraulic loading. The bioreactor was designed to oxidize organics to carbon dioxide and water; the reverse osmosis system reduces inorganic content to potable quality; and the photocatalytic oxidation unit removes residual organic impurities (part per million range) and provides in-situ disinfection. The design and performance of the hybrid system for producing potable/hygiene water is described.
Technical Paper

AUTOSAR Extensions for Predictable Task Synchronization in Multi-Core ECUs

2011-04-12
2011-01-0456
Multi-core processors are becoming increasingly prevalent, with several multi-core solutions being offered for the automotive sector. Recognizing this trend, the AUTomotive Open System ARchitecture (AUTOSAR) standard Version 4.0 has introduced support for multi-core embedded real-time operating systems. A key element of the AUTOSAR multi-core specification is the spinlock mechanism for inter-core task synchronization. In this paper, we study this spinlock mechanism from the standpoint of timing predictability. We describe the timing uncertainties introduced by standard test-and-set spinlock mechanisms, and provide a predictable priority-driven solution for inter-core task synchronization. The proposed solution is to arbitrate critical sections using the well-established Multi-processor Priority Ceiling Protocol [3], which is the multiprocessor version of the ceiling protocol for uniprocessors [1, 2] used by AUTOSAR.
Technical Paper

Addressing Vehicle Equivalency to Facilitate Meaningful Automobile Comparisons

2000-04-26
2000-01-1474
Advanced vehicles with lower emissions or higher fuel economy cannot accomplish these social goals unless consumers choose to purchase them instead of conventional automobiles. What attributes will these advanced vehicles need in order to have significant market penetration? In this paper we investigate the importance of “vehicle comparability” in comparative analyses of conventional and alternative fuel/powertrain automobiles. Comparability can mean that the vehicles have identical power, size, safety, range, etc. Alternatively, it can mean that customers find the bundle of attributes of a vehicle equally attractive to the bundle of attributes of another. If customers insist on current vehicle attributes, the advanced vehicles will not be attractive. Analysts differ in the extent to which they account for vehicle equivalency.
Technical Paper

Advanced Spacesuit Avionics Subsystem Integration Testing

2014-09-16
2014-01-2150
This paper summarizes the Power, Avionics and Software (PAS) 1.0 subsystem integration testing and test results that occurred in August and September of 2013. This paper covers the capabilities of each PAS assembly to meet integration test objectives for non-safety critical, non-flight, non-human-rated hardware and software development. This test report is the outcome of the first integration of the PAS subsystem and is meant to provide data for subsequent designs, development and testing of the future PAS subsystems. The two main objectives were to assess the ability of the PAS assemblies' to exchange messages and to perform audio tests of both inbound and outbound channels. This paper describes each test performed, defines the test, the data, and provides conclusions and recommendations.
Technical Paper

Agent Architecture for Aviation Data Integration System

2004-11-02
2004-01-3122
Aviation Data Integration System (ADIS) project explores methods and techniques for integrating heterogeneous aviation data to support aviation problem-solving activity. Aviation problem-solving activities include: engineering troubleshooting, incident and accident investigation, routine flight operations monitoring, flight plan deviation monitoring, safety assessment, maintenance procedure debugging, and training assessment. To provide optimal quality of service, ADIS utilizes distributed intelligent agents including data collection agents, coordinator agents and mediator agents. This paper describes the proposed agent-based architecture of the Aviation Data Integration System (ADIS).
Journal Article

Altair Lander Life Support: Design Analysis Cycles 1, 2, and 3

2009-07-12
2009-01-2477
NASA is working to develop a new lunar lander to support lunar exploration. The development process that the Altair project is using for this vehicle is unlike most others. In “Lander Design Analysis Cycle 1” (LDAC-1), a single-string, minimum functionality design concept was developed, including life support systems for different vehicle configuration concepts. The first configuration included an ascent vehicle and a habitat with integral airlocks. The second concept analyzed was a combined ascent vehicle-habitat with a detachable airlock. In LDAC-2, the Altair team took the ascent vehicle-habitat with detachable airlock and analyzed the design for the components that were the largest contributors to the risk of loss of crew (LOC). For life support, the largest drivers were related to oxygen supply and carbon dioxide control. Integrated abort options were developed at the vehicle level.
Journal Article

An Overview of the V&V of Flight-Critical Systems Effort at NASA

2011-10-18
2011-01-2560
As the US is getting ready for the Next Generation (NextGen) of Air Traffic System, there is a growing concern that the current techniques for verification and validation will not be adequate for the changes to come. The JPDO (in charge of implementing NextGen) has given NASA a mandate to address the problem and it resulted in the formulation of the V&V of Flight-Critical Systems effort. This research effort is divided into four themes: argument-based safety assurance, distributed systems, authority and autonomy, and, software intensive systems. This paper presents an overview of the technologies that will address the problem.
Technical Paper

Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft

2007-07-09
2007-01-3258
Silver biocide offers a potential advantage over iodine, the current state-of-the-art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. As such, silver may reduce the overall complexity and mass of future spacecraft potable water systems, particularly those used to support long duration missions. A primary technology gap identified for the use of silver biocide is one of material compatibility. Wetted materials of construction are required to be selected such that silver ion concentrations can be maintained at biocidally effective levels.
Technical Paper

Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft: Microbial Efficacy

2007-07-09
2007-01-3142
This work describes the microbiological assessment and materials compatibility of a silver-based biocide as an alternative to iodine for the Crew Exploration Vehicle (CEV) and future spacecraft potable water systems. In addition to physical and operational anti-microbial counter-measures, the prevention of microbial growth, biofilm formation, and microbiologically induced corrosion in water distribution and storage systems requires maintenance of a biologically-effective, residual biocide concentration in solution and on the wetted surfaces of the system. Because of the potential for biocide depletion in water distribution systems and the development of acquired biocide resistance within microbial populations, even sterile water with residual biocide may, over time, support the growth and/or proliferation of bacteria that pose a risk to crew health and environmental systems.
Journal Article

Automatic Hex-Dominant Mesh Generation for Complex Flow Configurations

2018-04-03
2018-01-0477
A method for automatically generating hex-dominant meshes for Computational Fluid Dynamics (CFD) applications is presented in this article. Two important regions of the mesh for any CFD simulation are the interior mesh and the boundary layer mesh. The interior mesh needs to be fine in the critical flow regions to ensure accurate solutions. The proposed method uses Bubble Mesh algorithm which packs bubbles inside the geometry to generate the mesh nodes. Algorithm was tested for sample flow problems and improvements were made to interior and boundary layer mesh generation methods. The interior mesh is generated using directionality and sizing control functions specified on the points of a 3D grid generated over the entire geometry. This offers a flexible control over mesh sizing and local mesh refinement. Boundary layer mesh is important to accurately model the physics of boundary layer near the geometry walls.
Journal Article

Challenges in Autonomous Vehicle Testing and Validation

2016-04-05
2016-01-0128
Software testing is all too often simply a bug hunt rather than a well-considered exercise in ensuring quality. A more methodical approach than a simple cycle of system-level test-fail-patch-test will be required to deploy safe autonomous vehicles at scale. The ISO 26262 development V process sets up a framework that ties each type of testing to a corresponding design or requirement document, but presents challenges when adapted to deal with the sorts of novel testing problems that face autonomous vehicles. This paper identifies five major challenge areas in testing according to the V model for autonomous vehicles: driver out of the loop, complex requirements, non-deterministic algorithms, inductive learning algorithms, and fail-operational systems.
Technical Paper

Characterizing the Influence of Temperature and Vacuum Quality on the Desorption Kinetics of Commercial Adsorbents

2008-06-29
2008-01-2096
Understanding the effects of dynamic thermal and vacuum regeneration on VOC desorption kinetics is needed for the development of regenerable trace contaminant control air revitalization systems. The effects of temperature and vacuum quality on the desorption kinetics of ethanol from Carbosieve SIII were examined using 1 hour regeneration cycles. The effect of vacuum quality on ethanol desorption was studied by exposing adsorption tubes loaded with ethanol to low pressures (1.0, 0.5, 0.3, and 0.12 atm) at various thermal regeneration temperatures (160, 100, 70, and 25 °C). At 1 atm of pressure, ethanol removal was found to increase from 2% at 25 °C, to 25% at 70 °C, to 55% at 100 °C, and to 77% at 160 °C. Decreasing the atmospheric pressure from 1 to 0.1 atm for 1 hr did not significantly enhance Carbosieve SIII regeneration at ambient temperatures (25 °C). However, heating the adsorbent at low pressures enhanced its regeneration.
Technical Paper

Computer Aiding for Low-Altitude Flight Simulation to Flight: A Case Study

1993-09-01
932518
NASA and the U.S. Army have designed, developed, and tested a Computer Aiding for Low-Altitude Helicopter Flight guidance system. This system provides guidance to the pilot for near-terrain covert helicopter operations. The guidance is presented to the pilot through symbology on a helmet mounted display. This system has demonstrated the feasibility of a pilot-centered concept of terrain flight guidance that preserves pilot flexibility and authority. The system was developed using extensive piloted simulation and then implemented in a UH-60 Blackhawk helicopter for flight development and evaluation. A close correlation between simulation and actual flight was found; however, in flight overall pilot workload increased and performance decreased. This paper presents a description of the basic system design, simulation, and flight evaluations.
Technical Paper

Corroborative Evaluation of the Real-World Energy Saving Potentials of InfoRich Eco-Autonomous Driving (iREAD) System

2020-04-14
2020-01-0588
There has been an increasing interest in exploring the potential to reduce energy consumption of future connected and automated vehicles. People have extensively studied various eco-driving implementations that leverage preview information provided by on-board sensors and connectivity, as well as the control authority enabled by automation. Quantitative real-world evaluation of eco-driving benefits is a challenging task. The standard regulatory driving cycles used for measuring exhaust emissions and fuel economy are not truly representative of real-world driving, nor for capturing how connectivity and automation might influence driving trajectories. To adequately consider real-world driving behavior and potential “off-cycle” impacts, this paper presents four collaborative evaluation methods: large-scale simulation, in-depth simulation, vehicle-in-the-loop testing, and vehicle road testing.
Technical Paper

Development Status of Amine-based, Combined Humidity, CO2 and Trace Contaminant Control System for CEV

2006-07-17
2006-01-2192
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T.
Technical Paper

Development of an Amine-based System for Combined Carbon Dioxide, Humidity, and Trace Contaminant Control

2005-07-11
2005-01-2865
A number of amine-based carbon dioxide (CO2) removal systems have been developed for atmosphere revitalization in closed loop life support systems. Most recently, Hamilton Sundstrand has developed an amine-based sorbent, designated SA9T, possessing approximately 2-fold greater capacity compared to previous formulations. This new formulation has demonstrated applicability for controlling CO2 levels within vehicles and habitats as well as during extravehicular activity (EVA). Our current data demonstrates an amine-based system volume which is competitive with existing technologies which use metal oxides (Metox) and lithium hydroxide sorbents. Further enhancements in system performance can be realized by incorporating humidity and trace contaminant control functions within an amine-based atmosphere revitalization system. A 3-year effort to develop prototype hardware capable of removing CO2, H2O, and trace contaminants from a cabin atmosphere has been initiated.
Technical Paper

Effect of Piston Geometry on In-Cylinder Fluid Mechanics, Heat Transfer, and Ignition Delay in Rapid Compression Machines

2021-04-06
2021-01-0509
This paper presents the results from experiments and Computational Fluid Dynamics (CFD) simulations performed to understand the impact of piston geometry on ignition delay for Dimethyl Ether (DME)/air mixtures inside a Rapid Compression Machine (RCM). Three piston shapes and two dilution ratios are studied using CFD simulations validated by experiments. The three piston geometries under consideration are: a flat piston, a piston with an enlarged crevice, and a bowl piston. Key phenomena analyzed in the study include fluid flow patterns, heat transfer, temperature homogeneity of the mixture, and ignition delay. The CFD model provides reasonable predictions of ignition delay when compared with experimental data. Simulations indicate that flat and bowl pistons show similar heat transfer, ignition delay, and combustion characteristics, while the enlarged creviced piston shows lower peak temperatures and a cooler mixture core due to higher wall heat transfer.
Technical Paper

Effects of Relative Humidity on the Adsorption of Dichloromethane by Carbosieve SIII

2007-07-09
2007-01-3249
Carbosieve SIII was used to filter dichloromethane (DCM) from a simulated spacecraft gas stream. This adsorbent was tested as a possible commercial-off-the-shelf (COTS) filtration solution to controlling spacecraft air quality. DCM is a halocarbon commonly used in manufacturing for cleaning and degreasing and is a typical component of equipment offgassing in spacecraft. The performance of the filter was measured in dry and humid atmospheres. A known concentration of DCM was passed through the adsorbent at a known flow rate. The adsorbent removed dichloromethane until it reached the breakthrough volume. Carbosieve SIII exposed to dry atmospheric conditions adsorbed more DCM than when exposed to humid air. Carbosieve SIII is a useful thermally regenerated adsorbent for filtering DCM from spacecraft cabin air. However, in humid environments the gas passes through the filter sooner due to co-adsorption of additional water vapor from the atmosphere.
Journal Article

Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

2011-05-17
2011-01-1734
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations.
Technical Paper

Engine Icing Modeling and Simulation (Part I): Ice Crystal Accretion on Compression System Components and Modeling its Effects on Engine Performance

2011-06-13
2011-38-0025
During the past two decades the occurrence of ice accretion within commercial high bypass aircraft turbine engines under certain operating conditions has been reported. Numerous engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion such as degraded engine performance, engine roll back, compressor surge and stall, and even flameout of the combustor. As ice crystals are ingested into the engine and low pressure compression system, the air temperature increases and a portion of the ice melts allowing the ice-water mixture to stick to the metal surfaces of the engine core. The focus of this paper is on estimating the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper it was necessary to initially assume a temperature range in which engine icing would occur.
X