Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

Analysis and Simplification of Thermal Endurance Tests of NOx Storage-Reduction Catalysts

2004-03-08
2004-01-1496
Our two types of NOx storage-reduction (NSR) catalyst have been tested under various conditions of thermal endurance; the performance of these catalysts have been regressed to give the formulas that enable to estimate the performance after thermal endurance; and we have found the method to simplify (shorten the duration of) the thermal endurance tests and that the thermal deterioration of NSR catalysts is controlled by the worst condition of endurance (at least approximately). The regression formula for the amount of potassium that contributes to the catalyst performance (active K) after the endurance has also been obtained. These formulas predict that the amount of active K is the least for the worst condition of endurance and suggest a difference in deterioration mechanism that reflects the performance between low and high temperatures and the portion of worse deterioration (front or rear).
Technical Paper

Analysis on Behaviors of Swirl Nozzle Spray and Slit Nozzle Spray in Relation to DI Gasoline Combustion

2003-03-03
2003-01-0058
Behavior of sprays formed by slit nozzle as well as swirl nozzles with the spray cone angle in the range of 40° ∼110 ° were studied in a constant volume N2 gas chamber. The fuels used are iso-pentane, n-heptane, benzene and gasoline. The ambient pressure and temperature were raised up to 1.0 MPa and 465 K, respectively. The injection pressure was mainly set at 8 MPa. Spray penetrates at an almost constant speed for a while after injection start and begins to decelerate at a certain point. This point was judged as breakup point, based on a momentum theory on spray motion, the observation of spray inside and the analysis of the spray front reacceleration which occurs under highly volatile condition.
Technical Paper

Characterization of Low Temperature Diesel Combustion with Various Dilution Gases

2007-04-16
2007-01-0126
The effects of intake dilution with various dilution gases including nitrogen, argon, and carbon dioxide on low temperature diesel combustion were investigated in a naturally aspirated DI diesel engine to understand the mechanism of the simultaneous reductions in smoke and NOx with ultra-high EGR. NOx almost completely disappears with the intake oxygen concentration diluted below 16% regardless of the kind of dilution gas. Smoke emissions decrease with increased heat capacity of the charged gas due to promotion of mixture homogeneity with longer ignition delays. Intake dilution with the 36% CO2 + 64% Ar mixture which has a similar specific heat capacity as N2 shows lower smoke emissions than with N2. Chemical kinetics analysis shows that carbon dioxide may help to reduce NOx and soot by lowering the reaction temperature as well as by changing the concentrations of some radicals or/and species related to soot and NOx formation.
Technical Paper

Development of Direct and Fast Response Gas Measurement

2008-04-14
2008-01-0758
Due to regulations for even lower levels of pollutants in exhaust gas, development of advanced combustion techniques and increasingly efficient catalysts has become more crucial than ever. One of the essential technologies to achieve this goal is an advanced measurement method, which can detect the characteristics of exhaust gas, such as temperature and chemical compositions, in real-time to clarify their reaction mechanisms. A direct and fast response (1ms) measurement technique was developed based on diode laser absorption spectroscopy and applied to practical engine exhaust measurement to prove the validity of this technology for various applications such as clarification of engine start phenomena and improvement of EGR controls.
Technical Paper

Development of High Performance Three-Way-Catalyst Technology to Lower NOx Emission

2009-04-20
2009-01-1398
One primary result of the reduction of platinum group metals (PGM) within a catalytic converter is the decline in NOx conversion efficiency. This paper hypothesizes that the primary factor of this decline to be hydrocarbon (HC) poisoning. To maintain high NOx conversion efficiency as the PGM reduces, Rh activation improvement becomes significant to overcome the HC poisoning. Analysis of the Rh deterioration mechanism found that it is effective to separately arrange Rh and CeO2 on the converter, avoiding the Rh deactivation. By this improvement, we improved the catalyst activity at less than 25% of the original Rh loading.
Technical Paper

Development of Instantaneous Temperature Measurement Technique for Combustion Chamber Surface and Verification of Temperature Swing Concept

2016-04-05
2016-01-0675
To improve the thermal efficiency of an internal combustion engine, the application of ceramics to heat loss reduction in the cylinders has been studied [1-2]. The approach taken has focused on the low heat conductivity and high heat resistance of the ceramic. However, since the heat capacity of the ceramic is so large, there is a problem in that the wall temperature increases during the combustion cycle. This leads to a decrease in the charging efficiency, as well as knocking in gasoline engines. To overcome these problems, the application of thermal insulation without raising the gas temperature during the intake stroke has been proposed [3-4]. As a means of achieving this, we developed a "temperature swing heat insulation coating" [5, 6, 7, 8, 9]. This reduces the heat flux from the combustion chamber into the cooling water by making the wall temperature follow the gas temperature as much as possible during the expansion and exhaust strokes.
Technical Paper

Development of Low Sulfated Ash and Fuel Economy Diesel Engine Oil

2009-06-15
2009-01-1845
A low sulfated ash (S.Ash) DL-1/C2 0W-30 diesel engine oil with improved fuel economy has been developed to meet the PM targets outlined in the Euro 5 emissions standards and to help achieve the voluntary European CO2 target of 140 g/km. The newly developed engine oil is an effective solution to the trilemma (triple probrem) of reliability (high detergency and high anti wear), low S.Ash, and fuel economy, achieving a fuel economy improvement of 2% and reducing CO2 emissions by 3 g/km.
Technical Paper

Development of RC-IGBT with a New Structure That Contributes to Both Reduced Size of Power Control Unit and Low Loss in Hybrid Electric Vehicles

2020-04-14
2020-01-0596
In order to improve the fuel efficiency of Hybrid Electric Vehicles (HEVs), it is necessary to reduce the size and power loss of the HEV Power Control Units (PCUs). The loss of power devices (IGBTs and FWDs) used in a PCU accounts for approximately 20% of electric power loss of an HEV. Therefore, it is important to reduce the power loss while size reduction of the power devices. In order to achieve the newly developed PCU target for compact-size vehicles, the development targets for the power device were to achieve low power loss equivalent to its previous generation while size reduction by 25%. The size reduction was achieved by developing a new RC-IGBT (Reverse Conducting IGBT) with an IGBT and a FWD integration. As for the power loss aggravation, which was a major issue due to this integration, we optimized some important parameters like the IGBT and FWD surface layout and backside FWD pattern.
Technical Paper

Development of Sealing Material Used in the Body Welding Shop

2007-04-16
2007-01-0418
1 The principal characteristics required of sealing materials used in the body shop have focused on their adhesion to oily steel sheets and quick curing performance. Means for attaining these characteristics have been narrowed down to a basic resin system and a curing system. Various techniques have been studied to ensure proper anti-corrosion performance at the sealer application boundaries and thin application areas. They include the addition of anti-corrosion fillers, the provision of conductivity (through electro-deposition), and the application of a micro foam film over the application boundaries. Thus, prospects for attaining the same level of anti-corrosion performance as existing materials have been achieved.
Technical Paper

Development of Simplified Finite Element Model for Ultra-High-Strength Steel Resistance Spot Weld Fractures

2020-04-14
2020-01-0220
This paper describes the development of a simplified fracture finite element (FE) model for resistance spot welds (RSW) of ultra-high-strength steel (UHSS) that can be incorporated into large-scale vehicle FE model. It is known that the RSW of UHSS generates two types of fracture modes: heat-affected zone (HAZ) and nugget zone fractures. Lap shear and peeling coupon tests using UHSS sheets found that the different RSW fracture modes occurred at different nugget diameters. To analyze this phenomenon, detailed simulated coupon tests were carried out using solid hexahedral elements. The analytical results revealed that RSW fractures are defined by both the application of plastic strain on the elements and the stress triaxiality state of the elements. A detailed model incorporating a new fracture criteria model recreated the different UHSS RSW fracture modes and achieved a close correlation with the coupon test results.
Technical Paper

Development of TLP-AI Technology to Realize High Temperature Operation of Power Module

2019-04-02
2019-01-0607
Application of SiC power devices is regarded as a promising means of reducing the power loss of power modules mounted in power control units. Due to those high thermostable characteristics, the power module with SiC power devices are required to have higher operating temperature than the conventional power module with Si power devices. However, the limitations of current packaging technology prevent the utilization of the full potential of SiC power devices. To resolve these issues, the development of device bonding technology is very important. Although transient liquid phase (TLP) bonding is a promising technology for enabling high temperature operation because its bonding layer has a high melting point, the characteristics of the TLP bonding layer tend to damage the power devices. This paper describes the development of a bonding technology to achieve high temperature operation using a stress reduction effect.
Technical Paper

Development of Three-Way Catalysts Enhanced NOx Purifying Activity

2018-04-03
2018-01-0942
Growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. One of the key technologies is a new OSC material that has low surface area (SA) and high OSC performance. We enhanced the pyrochlore- ceria/zirconia (CZ) which has a very small SA. In order to enhance the heat resistance and promote the OSC reaction, we selected and optimized the additive element. This material showed high OSC performance especially in the temperature range of 400 degrees or less. Another key technology is washcoat structure that has high gas diffusivity by making connected pore in the washcoat (New pore forming technology).
Technical Paper

Development of Ultra Low Viscosity 0W-8 Engine Oil

2020-04-14
2020-01-1425
Further fuel economy improvement of the internal combustion engine is indispensable for CO2 reduction in order to cope with serious global environmental problems. Although lowering the viscosity of engine oil is an effective way to improve fuel economy, it may reduce the wear resistance. Therefore, it is important to achieve both improved fuel economy and reliability. We have developed new 0W- 8 engine oil of ultra-low viscosity and achieved an improvement in fuel economy by 0.8% compared to the commercial 0W-16 engine oil. For this new oil, we reduced the friction coefficient under boundary lubrication regime by applying an oil film former and calcium borate detergent. The film former increased the oil film thickness without increasing the oil viscosity. The calcium borate detergent enhanced the friction reduction effect of molybdenum dithiocarbamate (MoDTC).
Journal Article

Development of Unidirectional CFRP Reinforced Aluminum Bumper Reinforcement

2021-04-06
2021-01-0362
Since bumper reinforcements are positioned at front/rear ends of vehicles, weight reduction of the bumper reinforcements enhances vehicle dynamic performance by reducing a yaw moment of inertia. CFRP (Carbon Fiber Reinforced Plastic) composites are attractive lightweight materials due to their excellent specific strength and rigidity. However, because of their relatively high cost, applications of CFRP materials to vehicle structural parts are limited. In this study we have developed a lightweight, structural part, which consists of a thin-walled Al (Aluminum) bumper reinforcement with a UD (Unidirectional)-CFRP sheet. The intention is to prevent an increased part cost by reducing the amount of Al and by minimizing the amount of CFRP. Compared to Al, UD-CFRP sheets have even higher tensile strength and modulus. When vehicles crash, bumper reinforcements may be subjected to bending force.
Journal Article

Development of a Ceramic EHC

2022-03-29
2022-01-0536
In recent years, electrically heated catalysts (EHCs) have been developed to achieve lower emissions. In several EHC heating methods, the direct heating method, which an electric current is applied directly to the catalyst substrate, can easily activate the catalyst before engine start-up. The research results reported on the use of the direct heating EHC to achieve significant exhaust gas purification during cold start-up [1]. From the perspective of catalyst loading, ceramics is considered to be a better material for the substrate than metal due to the difference in coefficient of thermal expansion between the catalyst and the substrate, but the EHC made of ceramics has difficulties such as controllability of the current distribution, durability and reliability of the connection between the substrate and the electrodes.
Technical Paper

Development of a Compact Adsorption Heat Pump System for Automotive Air Conditioning System

2016-04-05
2016-01-0181
In order to reduce the energy consumption of the automotive air conditioning system, adsorption heat pump (AHP) system is one of the key technologies. We have been developing compact AHP system utilizing the exhaust heat from the engine coolant system (80-100 °C), which can meet the requirements in the automotive application. However, AHP systems have not been practically used in automotive applications because of its low volumetric power density of the adsorber. The volumetric power density of the adsorber is proportional to sorption rate, packing density and latent heat. In general, the sorption rate is determined by mass transfer resistance in primary particle of an adsorbent and heat and mass transfer resistance in packed bed. In order to improve the volumetric power density of the adsorber, it is necessary to increase the production of the sorption rate and the packing density.
Journal Article

Development of a New Ceramic Substrate with Gas Flow Control Functionality

2017-03-28
2017-01-0919
Emission regulations in many countries and regions around the world are becoming stricter in reaction to the increasing awareness of environment protections, and it has now become necessary to improve the performance of catalytic converters to achieve these goals. A catalytic converter is composed of a catalytically active material coated onto a ceramic honeycomb-structured substrate. Honeycomb substrates play the role of ensuring intimate contact between the exhaust gas and the catalyst within the substrate’s flow channels. In recent years, high-load test cycles have been introduced which require increased robustness to maintain low emissions during the wide range of load changes. Therefore, it is extremely important to increase the probability of contact between the exhaust gas and catalyst. To achieve this contact, several measures were considered such as increasing active sites or geometrical surface areas by utilizing substrates with higher cell densities or larger volumes.
Journal Article

Development of a New Model Based Air-Fuel Ratio Control System

2009-04-20
2009-01-0585
The second-generation air-fuel ratio control method has been developed to reduce exhaust gas emissions in accordance with the improvements in catalysts. The control system consists of a feedforward control using a fuel behavior model, a feedback control using an universal exhaust gas oxygen (UEGO) sensor and a feedback control utilizing the heated exhaust gas oxygen (HEGO) sensor. This significantly improves air-fuel ratio tracking performance by feedforward control derived from the models that express the dynamic phenomena and the disturbance attenuation by UEGO feedback controller which compensates for the long dead-time characteristics by the state predictive control. The tracking performance and the disturbance attenuation can be achieved independently by a two-degree-of-freedom structure presented in this paper. The exhaust air-fuel ratio downstream of the catalyst precisely converges to stoichiometry, which maximizes the conversion efficiency of the catalyst.
Technical Paper

Development of a New Valvetrain Wear Test - The Sequence IVB Test

2016-04-05
2016-01-0891
The study described in this paper covers the development of the Sequence IVB low-temperature valvetrain wear test as a replacement test platform for the existing ASTM D6891 Sequence IVA for the new engine oil category, ILSAC GF-6. The Sequence IVB Test uses a Toyota engine with dual overhead camshafts, direct-acting mechanical lifter valvetrain system. The original intent for the new test was to be a direct replacement for the Sequence IVA. Due to inherent differences in valvetrain system design between the Sequence IVA and IVB engines, it was necessary to alter existing test conditions to ensure adequate wear was produced on the valvetrain components to allow discrimination among the different lubricant formulations. A variety of test conditions and wear parameters were evaluated in the test development. Radioactive tracer technique (RATT) was used to determine the wear response of the test platform to various test conditions.
X