Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations

2007-04-16
2007-01-0159
A new Computational Fluid Dynamics (CFD) code has been developed in order to overcome the deficiencies of traditional grid generation and mesh motion methods. The new code uses a modified cut-cell Cartesian technique that eliminates the need for the computational grid to coincide with the geometry of interest. The code also includes state-of-the-art numerical techniques and sub-models for simulating the complex physical and chemical processes that occur in engines. Features such as shared and distributed memory parallelization, a multigrid pressure solver and user-specified grid embedding allow for efficient simulations while maintaining the grid resolution necessary for accurate engine modeling. In addition, a new Adaptive Grid Embedding (AGE) technique has been developed and implemented. Sub-models for turbulence, spray injection, spray breakup, liquid drop dynamics, ignition, combustion and emissions are also included in the code.
Technical Paper

A Numerical Investigation on Scalability and Grid Convergence of Internal Combustion Engine Simulations

2013-04-08
2013-01-1095
Traditional Lagrangian spray modeling approaches for internal combustion engines are highly grid-dependent due to insufficient resolution in the near nozzle region. This is primarily because of inherent restrictions of volume fraction with the Lagrangian assumption together with high computational costs associated with small grid sizes. A state-of-the-art grid-convergent spray modeling approach was recently developed and implemented by Senecal et al., (ASME-ICEF2012-92043) in the CONVERGE software. The key features of the methodology include Adaptive Mesh Refinement (AMR), advanced liquid-gas momentum coupling, and improved distribution of the liquid phase, which enables use of cell sizes smaller than the nozzle diameter. This modeling approach was rigorously validated against non-evaporating, evaporating, and reacting data from the literature.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

Accurate Measurements of Heat Release, Oxidation Rates, and Soluble Organic Compounds of Diesel Particulates through Thermal Reactions

2010-04-12
2010-01-0814
In an effort of providing better understanding of regeneration mechanisms of diesel particulate matter (PM), this experimental investigation focused on evaluating the amount of heat release generated during the thermal reaction of diesel PM and the concentrations of soluble organic compounds (SOCs) dissolved in PM emissions. Differences in oxidation behaviors were observed for two different diesel PM samples: a SOC-containing PM sample and a dry soot sample with no SOCs. Both samples were collected from a cordierite particulate filter membrane in a thermal reactor connected to the exhaust pipe of a light-duty diesel engine. A differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TGA) were used to measure the amount of heat release during oxidation, along with subsequent oxidation rates and the concentrations of SOCs dissolved in particulate samples, respectively.
Technical Paper

Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle

2015-04-14
2015-01-0832
For several years there has been a great deal of effort made in researching ways to run a compression ignition engine with simultaneously high efficiency and low emissions. Recently much of this focus has been dedicated to using gasoline-like fuels that are more volatile and less reactive than conventional diesel fuel to allow the combustion to be more premixed. One of the key challenges to using fuels with such properties in a compression ignition engine is stable engine operation at low loads. This paper provides an analysis of how stable gasoline compression ignition (GCI) engine operation was achieved down to idle speed and load on a multi-cylinder compression ignition engine using only 87 anti-knock index (AKI) gasoline. The variables explored to extend stable engine operation to idle included: uncooled exhaust gas recirculation (EGR), injection timing, injection pressure, and injector nozzle geometry.
Technical Paper

Advanced Technology Fuel System for Heavy Duty Diesel Engines

1997-11-17
973182
Caterpillar Fuel Systems is developing a family of next generation electronic unit injectors that provide the fundamental injection characteristics necessary for emissions and performance improvements for future direct-injection diesel engines. This paper describes the development and design of the mechanically actuated version of Caterpillar's advanced electronic unit injector fuel system to meet the engine customer driven requirements for enhanced injection characteristics with reliability and durability improvements.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

An Investigation of Particulate Morphology, Microstructures, and Fractal Geometry for ael Diesel Engine-Simulating Combustor

2004-10-25
2004-01-3044
The particulate matter (PM) produced from a diesel engine-simulating combustor was characterized in its morphology, microstructure, and fractal geometry by using a unique thermophoretic sampling and Transmission Electron Microscopy (TEM) system. These results revealed that diesel PM produced from the laboratory-scale burner showed similar morphological characteristics to the particulates produced from diesel engines. The flame air/fuel ratio and the particulate temperature history have significant influences on both particle size and fractal geometry. The primary particle sizes were measured to be 14.7 nm and 14.8 nm under stoichiometric and fuel-rich flame conditions, respectively. These primary particle sizes are smaller than those produced from diesel engines. The radii of gyration for the aggregate particles were 83.8 nm and 47.5 nm under these two flame conditions.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Journal Article

CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer

2019-01-15
2019-01-0001
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty diesel engine running with a gasoline fuel that has a research octane number (RON) of 80. The goal was to optimize the gasoline compression ignition (GCI) combustion recipe (piston bowl geometry, injector spray pattern, in-cylinder swirl motion, and thermal boundary conditions) for improved fuel efficiency while maintaining engine-out NOx within a 1-1.5 g/kW-hr window. The numerical model was developed using the multi-dimensional CFD software CONVERGE. A two-stage design of experiments (DoE) approach was employed with the first stage focusing on the piston bowl shape optimization and the second addressing refinement of the combustion recipe. For optimizing the piston bowl geometry, a software tool, CAESES, was utilized to automatically perturb key bowl design parameters. This led to the generation of 256 combustion chamber designs evaluated at several engine operating conditions.
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Technical Paper

Caterpillar Light Truck Clean Diesel Program

1999-04-27
1999-01-2243
In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge.
Technical Paper

Characterization of Oxidation Behaviors and Chemical-Kinetics Parameters of Diesel Particulates Relevant to DPF Regeneration

2010-10-25
2010-01-2166
At the current stage of engine technology, diesel engines typically require diesel particulate filter (DPF) systems to meet recent particulate emissions standards. To assure the performance and reliability of DPF systems, profound understanding of filtration and regeneration mechanisms is required. Among extensive efforts for developing advanced DPF systems, the development of effective thermal management strategies, which control the thermal runaway taking place in oxidation of an excess amount of soot deposit in DPF, is quite challenging. This difficulty stems mainly from lack of sufficient knowledge and understanding about DPF regeneration mechanisms, which need detailed information about oxidation of diesel particulate matter (PM). Therefore, this work carried out a series of oxidation experiments of diesel particulates collected from a DPF on a diesel engine, and evaluated the oxidation rates of the samples using a thermo-gravimetric analyzer (TGA).
Technical Paper

Characterization of Particulate Morphology, Nanostructures, and Sizes in Low-Temperature Combustion with Biofuels

2012-04-16
2012-01-0441
Detailed characteristics of morphology, nanostructures, and sizes were analyzed for particulate matter (PM) emissions from low-temperature combustion (LTC) modes of a single-cylinder, light-duty diesel engine. The LTC engines have been widely studied in an effort to achieve high combustion efficiency and low exhaust emissions. Recent reports indicate that the number of nucleation mode particles increased in a broad engine operating range, which implies a negative impact on future PM emissions regulations in terms of the nanoparticle number. However, the size measurement of solid carbon particles by commercial instruments is indeed controversial due to the contribution of volatile organics to small nanoparticles. In this work, an LTC engine was operated with various biofuel blends, such as blends (B20) of soy bean oil (soy methyl ester, SME20) and palm oil (palm methyl ester, PME20), as well as an ultra-low-sulfur diesel fuel.
Technical Paper

Characterizing Spray Behavior of Diesel Injection Systems Using X-Ray Radiography

2009-04-20
2009-01-0846
In Diesel engines, fuel injection plays a critical role in performance, efficiency, and emissions. Altering parameters such as injection quantity, duration, pressure, etc. influences the injector's performance. Changes in the injection system architecture can also affect the spray behavior. Understanding of the flow near the nozzle exit can lead to the establishment of correlation to spray characteristics further downstream, and eventually its combustion behavior in the engine. Because of its high density, the near-nozzle region of the spray is difficult to study using optical techniques. This near-nozzle region of spray from high pressure injectors was studied using the quantitative and time-resolved x-ray radiography technique. This method provides high spatial and temporal resolution without significant scattering effects.
Technical Paper

Combustion Modeling of Conventional Diesel-type and HCCI-type Diesel Combustion with Large Eddy Simulations

2008-04-14
2008-01-0958
A general combustion model, in the context of large eddy simulations, was developed to simulate the full range of combustion in conventional diesel-type and HCCI-type diesels. The combustion model consisted of a Chemkin sub-model and an Extended Flamelet Time Scale (EFTS) sub-model. Specifically, Chemkin was used to simulate auto-ignition process. In the post-ignition phase, the combustion model was switched to EFTS. In the EFTS sub-model, combustion was assumed to be a combination of two elementary combustion modes: homogeneous combustion and flamelet combustion. The combustion index acted as a weighting factor blending the contributions from these two modes. The Chemkin sub-model neglected the subgrid scale turbulence-chemistry interactions whereas the EFTS model took them into account through a presumed PDF approach. The model was used to simulate an early injection mode of a Cummins DI diesel engine and a mode of a Caterpillar DI diesel engine.
Technical Paper

Combustion System Optimization of a Light-Duty GCI Engine Using CFD and Machine Learning

2020-04-14
2020-01-1313
In this study, the combustion system of a light-duty compression ignition engine running on a market gasoline fuel with Research Octane Number (RON) of 91 was optimized using computational fluid dynamics (CFD) and Machine Learning (ML). This work was focused on optimizing the piston bowl geometry at two compression ratios (CR) (17 and 18:1) and this exercise was carried out at full-load conditions (20 bar indicated mean effective pressure, IMEP). First, a limited manual piston design optimization was performed for CR 17:1, where a couple of pistons were designed and tested. Thereafter, a CFD design of experiments (DoE) optimization was performed where CAESES, a commercial software tool, was used to automatically perturb key bowl design parameters and CONVERGE software was utilized to perform the CFD simulations. At each compression ratio, 128 piston bowl designs were evaluated.
Technical Paper

Comparing the Performance of SunDiesel™ and Conventional Diesel in a Light-Duty Vehicle and Heavy-Duty Engine

2005-10-24
2005-01-3776
SunDiesel fuel is a biomass-to-liquid (BTL) fuel that may have certain attributes different from conventional diesel. In this investigation, 100% SunDiesel was tested both in a Mercedes A-Class (MY1999) diesel vehicle and a single-cylinder heavy-duty compression-ignition direct-injection engine. The SunDiesel's emissions and fuel consumption were significantly better than conventional diesel fuel, especially in nitrogen oxides (NOx) reduction. In the vehicle U.S. Environmental Protection Agency (EPA), Federal Test Procedure 75 (FTP-75), and New European Drive Cycle (NEDC) tests, the carbon dioxide emissions on a mile basis (g/mile) from SunDiesel fuel were almost 10% lower than the conventional diesel fuel. Similarly, in the single-cylinder engine steady-state tests, the reductions in brake specific NOx, carbon monoxide (CO), and particulate matter (PM) are equally significant. Combustion analysis, though not conclusive, indicates that there are differences deserving further research.
Technical Paper

Comparison of RCCI Operation with and without EGR over the Full Operating Map of a Heavy-Duty Diesel Engine

2016-04-05
2016-01-0794
Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve high efficiency combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions. A key requirement for extending to high-load operation is reduce the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Natural gas/diesel RCCI engine operation is compared over the EPA Heavy-Duty 13 mode supplemental emissions test with and without EGR.
X