Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

A Test-Rig for Parametric Studies of the Car Seat

1993-03-01
930347
Previous studies have shown that car seat properties play an important role for the occupant protection during various types of accidents. An improved understanding of the interaction between the occupant and the seat is therefore desirable, since this could lead to enhanced protective capacities of future car seats. In this work a test-rig has been developed and constructed, by means of which it is possible to study the response from various seats during frontal collisions. With small modifications the test-rig can be utilized to study other collision directions as well. The rig has been used in a test series, which comprises four car seats in altogether 14 tests. In order to evaluate the interaction between the seat and the dummy, measurements have been made on: the seat frame; the floor connections; the seat belt; the submarine-beam; and on several locations in the dummy.
Technical Paper

Analysis of Brake Judder by use of Amplitude Functions

1999-05-17
1999-01-1779
Brake judder is a forced vibration occurring in different types of vehicles. The frequency of the vibration can be as high as 500 Hz, but usually remains below 100 Hz and often as low as 10-20 Hz. The driver experiences judder as vibrations in the steering wheel, brake pedal and floor. For high frequency brake judder, the structural vibrations are accompanied by a sound. In the present paper the vibration amplitude (in terms of angular deflection, velocity or acceleration) of the caliper has been used as a quantitative measure of the vibration level. Brake Torque Variation (BTV) is the primary excitation for the vibrations. The mechanical effects generating BTV are linked not only to manufacturing tolerances but also to tribological issues. Uneven disc wear as well as Thermo-Elastic Instabilities (TEI) can lead to judder. Especially the effect of the wheel suspension on the transfer of the vibrations to the driver has to be considered.
Technical Paper

Battery Parameter Estimation from Recorded Fleet Data

2016-10-17
2016-01-2360
Existing battery parameter model structures are evaluated by estimating model parameters on real driving data applying standard system identification methods. Models are then evaluated on the test data in terms of goodness of fit and RMSE in voltage predictions. This is different from previous battery model evaluations where a common approach is to train parameters using standardized tests, e.g. hybrid pulse-power capability (HPPC), with predetermined charge and discharge sequences. Equivalent linear circuit models of different complexity were tested and evaluated in order to identify parameter dependencies at different state of charge levels and temperatures. Models are then used to create voltage output given a current, state of charge and temperature. The average accuracy of modelling the DC bus voltage provides a model goodness of fit average higher than 90% for a single RC circuit model.
Technical Paper

Driver Kinematic and Muscle Responses in Braking Events with Standard and Reversible Pre-tensioned Restraints: Validation Data for Human Models

2013-11-11
2013-22-0001
The objectives of this study are to generate validation data for human models intended for simulation of occupant kinematics in a pre-crash phase, and to evaluate the effect of an integrated safety system on driver kinematics and muscle responses. Eleven male and nine female volunteers, driving a passenger car on ordinary roads, performed maximum voluntary braking; they were also subjected to autonomous braking events with both standard and reversible pre-tensioned restraints. Kinematic data was acquired through film analysis, and surface electromyography (EMG) was recorded bilaterally for muscles in the neck, the upper extremities, and lumbar region. Maximum voluntary contractions (MVCs) were carried out in a driving posture for normalization of the EMG. Seat belt positions, interaction forces, and seat indentions were measured. During normal driving, all muscle activity was below 5% of MVC for females and 9% for males.
Technical Paper

Drivers’ Perceived Sensitivity to Crosswinds and to Low-Frequency Aerodynamic Lift Fluctuations

2023-04-11
2023-01-0659
The automotive industry continues to increase the utilization of computer-aided engineering. This put demands on finding reliable objective measures that correlate to subjective driver assessments on driving stability performance. However, the drivers’ subjective perception of driving stability can be difficult to quantify objectively, especially on test tracks where the wind conditions cannot be controlled. The advancement in driving simulator technology may enable evaluation of driving stability with high repeatability. The purpose of this study is to correlate the subjective assessment of driving stability to reliable objective measures and to evaluate the usefulness of a driving simulator for the subjective assessment. Two different driver clinic studies were performed in a state-of-the-art driving simulator. The first study included 38 drivers (professional, experienced and common drivers) and focused on crosswind gust sensitivity.
Technical Paper

Evaluation of Electrically Heated Catalyst Control Strategies against a Variation of Cold Engine Start Driver Behaviour

2022-03-29
2022-01-0544
An electrically heated catalyst (EHC) in the three-way catalyst (TWC) aftertreatment system of a gasoline internal combustion engine (ICE) provides cold engine start exhaust pollutant emission reduction potential. The EHC can be started before switching on the ICE, thereby offering the possibility to pre-heat (PRH) the TWC, in the absence of exhaust flow. The EHC can also provide post engine start heat (PSH) when the heat is accompanied by exhaust mass flow over the TWC. A mixed heating strategy (MXH) comprises both PRH and PSH. All three strategies are evaluated under a range of engine start variations using an ICE-exhaust aftertreatment (EATS) simulation framework. It is driven by an engine speed-torque requested trace, with an engine-out emissions model focused on cold-start, engine heating and catalyst heating engine measures and a physics- based EATS with EHC model.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

Human Response to Vibrations and Its Contribution to the Overall Ride Comfort in Automotive Vehicles - A Literature Review

2020-04-14
2020-01-1085
The various factors that affect ride comfort, including noise, vibrations and harshness (NVH) have been in focus in many research studies due to an increasing demand in ride comfort in the automotive industry. Vibrations have been highlighted as an important contribution to assess and predict overall ride comfort. The purpose of this paper is to present an approach to explain ride comfort with respect to vibration for the seated occupant based on a systematic literature review of previous fundamental research and to relate these results to the application in the contemporary automotive industry. The results from the literature study show that numerous research studies have determined how vibration frequency, magnitude, direction, duration affect human response to vibration. Also, the studies have highlighted how body posture, age, gender and anthropometry affect the human perception of comfort.
Technical Paper

Investigation of Seat Suspensions with Embedded Negative Stiffness Elements for Isolating Bus Users’ Whole-Body Vibrations

2021-02-17
2021-01-5019
Bus drivers are a group at risk of often suffering from musculoskeletal problems, such as low-back pain, while bus passengers on the last-row seats experience accelerations of high values. In this paper, the contribution of K-seat in decreasing the above concern is investigated with a detailed simulation study. The K-seat model, a seat with a suspension that functions according to the KDamper concept, which combines a negative stiffness element with a passive one, is benchmarked against the conventional passive seat (PS) in terms of comfort when applied to different bus users’ seats. More specifically, it is tested in the driver’s and two different passengers’ seats, one from the rear overhang and one from the middle part. For the benchmark shake, both are optimized by applying excitations that correspond to real intercity bus floor responses when it drives over a real road profile.
Technical Paper

Quantitative High Speed Stability Assessment of a Sports Utility Vehicle and Classification of Wind Gust Profiles

2020-04-14
2020-01-0677
The automotive trends of vehicles with lower aerodynamic drag and more powerful drivetrains have caused increasing concern regarding stability issues at high speeds, since more streamlined bodies show greater sensitivity to crosswinds. This is especially pronounced for high vehicles, such as sports utility vehicles. Besides, the competitiveness in the automotive industry requires faster development times and, thus, a need to evaluate the high speed stability performance in an early design phase, preferable using simulation tools. The usefulness of these simulation tools partly relies on realistic boundary conditions for the wind and quantitative measures for assessing stability without the subjective evaluation of experienced drivers. This study employs an on-road experimental measurements setup to define relevant wind conditions and to find an objective methodology to evaluate high speed stability.
Technical Paper

Rear-End Collisions - A Study of the Influence of Backrest Properties on Head-Neck Motion using a New Dummy Neck

1993-03-01
930343
Neck injuries in rear-end collisions are usually caused by a swift extension-flexion motion of the neck and mostly occur at low impact velocities (typically less than 20 km/h). Although the injuries are classified as AIS 1, they often lead to permanent disability. The injury risk varies a great deal between different car models. Epidemiological studies show that the effectiveness of passenger-car head-restraints in rear-end collisions generally remains poor. Rear-end collisions were simulated on a crash-sled by means of a Hybrid III dummy with a new neck (Rear Impact Dummy-neck). Seats were chosen from production car models. Differences in head-neck kinematics and kinetics between the different seats were observed at velocity changes of 5 and 12.5 km/h. Comparisons were made with an unmodified Hybrid III. The results show that the head-neck motion is influenced by the stiffness and elasticity of the backrest as well as by the properties of the head-restraint.
Technical Paper

Target Driven Bushing Design for Wheel Suspension Concept Development

2023-04-11
2023-01-0638
Bushing elasticity is one of the most important compliance factors that significantly influence driving behavior. The deformations of the bushings change the wheel orientations under external forces. Another important factor of bushing compliance is to provide a comfortable driving experience by isolating the vibrations from road irregularities. However, the driving comfort and driving dynamics are often in conflict and need to be balanced in terms of bushing compliance design. Specifically, lateral force steer and brake force steer are closely related to safety and stability and comprises must be minimized. The sensitivity analysis helps engineers to understand the critical bushing for certain compliance attributes, but optimal balancing is complicated to understand. The combination of individual bushing stiffness must be carefully set to achieve an acceptable level of all the attributes.
X