Refine Your Search

Topic

Author

Search Results

Technical Paper

3-D Modeling of Conventional and HCCI Combustion Diesel Engines

2004-10-25
2004-01-2964
An investigation of the possibility to extend the 3-dimensional modeling capabilities from conventional diesel to the HCCI combustion mode simulation was carried out. Experimental data was taken from a single cylinder engine operating with early injections for the HCCI and a split-injection (early pilot+main) for the high speed Diesel engine operation. To properly phase the HCCI mode in the experiments, high amounts of cooled EGR and a decreased compression ratio were used. In numerical simulation performed using KIVA3-V code, modified to incorporate the Detailed Chemistry Approach the same conditions were reproduced. Special attention is paid on the analysis of the events leading up to the auto-ignition, which was reasonably well predicted.
Technical Paper

48V Mild-Hybrid Architecture Types, Fuels and Power Levels Needed to Achieve 75g CO2/km

2019-04-02
2019-01-0366
48V mild hybrid powertrains are promising technologies for cost-effective compliance with future CO2 emissions standards. Current 48V powertrains with integrated belt starter generators (P0) with downsized engines achieve CO2 emissions of 95 g/km in the NEDC. However, to reach 75 g/km, it may be necessary to combine new 48V powertrain architectures with alternative fuels. Therefore, this paper compares CO2 emissions from different 48V powertrain architectures (P0, P1, P2, P3) with different electric power levels under various driving cycles (NEDC, WLTC, and RTS95). A numerical model of a compact class passenger car with a 48V powertrain was created and experimental fuel consumption maps for engines running on different fuels (gasoline, Diesel, E85, CNG) were used to simulate its CO2 emissions. The simulation results were analysed to determine why specific powertrain combinations were more efficient under certain driving conditions.
Technical Paper

A Numerical Investigation of Gas Exchange Modeling and Performance Prediction of a Camless Two-Stroke Hydrogen Engine

2023-04-11
2023-01-0232
Heavy-duty vehicles are primarily powered by diesel fuel, emitting CO2 emissions regardless of the exhaust after-treatment system. Contrastingly, a hydrogen engine has the potential to decarbonize the transportation sector as hydrogen is a carbon free, renewable fuel. In this study, a multi-physics 1D simulation tool (GT-Power) is used to model the gas exchange process and performance prediction of a two-stroke hydrogen engine. The aim is to establish a maximum torque-level for a four-stroke hydrogen engine and then utilize different methods for two-stroke modeling to achieve similar torque by optimizing the gas exchange process. A camless engine is used as base, enabling the flexibility to utilize approximately square valve lift profiles. The preliminary step is the GT-Power model validation, which has been done using diesel and hydrogen engines (single-cylinder heavy-duty) experiments at different operating points (871 rpm, 1200 rpm, 1259 rpm, and 1508 rpm).
Journal Article

CFD-Based Optimization of a Diesel-fueled Free Piston Engine Prototype for Conventional and HCCI Combustion

2008-10-06
2008-01-2423
This paper presents results of a parametric CFD modeling study of a prototype Free Piston Engine (FPE), designed for application in a series hybrid electric vehicle. Since the piston motion is governed by Newton's second law, accounting for the forces acting on the piston/translator, i.e. friction forces, electrical forces, and in-cylinder gas forces, having a high-level control system is vital. The control system changes the electrical force applied during the stroke, thus obtaining the desired compression ratio. Identical control algorithms were implemented in a MATLAB/SIMULINK model to those applied in the prototype engine. The ignition delay and heat release data used in the MATLAB/SIMULINK model are predicted by the KIVA-3V CFD code which incorporates detailed chemical kinetics (305 reactions among 70 species).
Technical Paper

CI Methanol and Ethanol combustion using ignition improver

2019-12-19
2019-01-2232
To act on global warming, CO2 emissions must be reduced. This will require a reduction in the use of fossil fuels for transportation. Because of the large quantities of fossil fuels used in transportation, sources of renewable fuels other than biomass will have to be explored, such as electrofuels synthesized from CO2 using renewable electricity. Potential electrofuels include methanol and ethanol, which have shown promising results in SI engines. However, their low cetane numbers make these fuels unsuitable for CI engines because of their poor auto-ignition qualities. The main objective of this study was to evaluate the viability of using methanol and ethanol in CI engines at compression ratios of 16.7 and 20 with a pilot-main injection strategy in the PPC/CI regime. Single cylinder engine tests on a heavy duty engine were performed under medium load conditions (1262 rpm and 172 Nm).
Technical Paper

Dual Fuel Methanol and Diesel Direct Injection HD Single Cylinder Engine Tests

2018-04-03
2018-01-0259
Laws concerning emissions from heavy duty (HD) internal combustion engines are becoming increasingly stringent. New engine technologies are needed to satisfy these new requirements and to reduce fossil fuel dependency. One way to achieve both objectives can be to partially replace fossil fuels with alternatives that are sustainable with respect to emissions of greenhouse gases, particulates and nitrogen oxides (NOx). A suitable candidate is methanol. The aim of the study presented here was to investigate the possible advantages of combusting methanol in a heavy duty Diesel engine. Those are, among others, lower particulate emissions and thereby bypassing the NOx-soot trade-off. Because of methanol’s poor auto-ignition properties, Diesel was used as an igniting sources and both fuels were separately direct injected. Therefore, two separate standard common rail Diesel injection systems were used together with a newly designed cylinder head and adapted injection nozzles.
Technical Paper

Effects of Multiple Injections on Engine-Out Emission Levels Including Particulate Mass from an HSDI Diesel Engine

2007-04-16
2007-01-0910
The effects of multiple injections on engine-out emissions from a high-speed direct injection (HSDI) diesel engine were investigated in a series of experiments using a single cylinder research engine. Injection sequences in which the main injection was split into two, three and four pulses were tested and the resulting emissions (NOx, CO HC and particulate matter), torque and cylinder pressures were compared to those obtained with single injections. Together with the number of injections, the effects of varying the dwell time were also investigated. It was found that dividing the main injection into two parts lowered the engine-out particulate and CO emissions and increased fuel efficiency. However, it also resulted in increased NOx emissions.
Journal Article

Effects of Nozzle Geometry on the Characteristics of an Evaporating Diesel Spray

2016-10-17
2016-01-2197
The effects of nozzle geometry on diesel spray characteristics were studied in a spray chamber under evaporating conditions using three single-hole nozzles, one cylindrical and two convergent, designated N1 (outlet diameter 140 μm, k-factor 0), N2 (outlet diameter 140 μm, k-factor 2) and N3 (outlet diameter 136 μm, k-factor 2). Spray experiments were performed with each nozzle at two constant gas densities (15 and 30 kg/m3) and an ambient temperature (673 K) at which evaporation occurs, with injection pressures ranging from 800 to 1600 bar. A light absorption and scattering method using visible and UV light was implemented, and shadow images of liquid and vapor phase fuel were recorded with high-speed video cameras. The cylindrical nozzle N1 yielded larger local vapor cone angles than the convergent nozzles N2 and N3 at both gas densities, and the difference became larger as the injection pressure increased.
Technical Paper

Fuel Flow Impingement Measurements on Multi-Orifice Diesel Nozzles

2006-04-03
2006-01-1552
The injection process plays an important role in Diesel engines in terms of future emission legislations. Higher injection pressures and multiple injection events every cycle are a reality. To be able to understand how the fuel injection process can be further improved studies are needed on how higher pressure, multiple injections and multi orifice nozzles affect the overall process. The objective of this study was to further develop a measurement technique to determine injection rates and discharge coefficient for multi orifice nozzles. The technique used is based on measuring the instantaneous force of a fuel jet for a non-stationary injection process. The technique is applicable for multi orifice nozzles at high injection pressures. Both single and multiple injections can be resolved.
Technical Paper

Gasoline HCCI Modeling: An Engine Cycle Simulation Code with a Multi-Zone Combustion Model

2002-05-06
2002-01-1745
For the application to Gasoline Homogenous Charge Compression Ignition (HCCI) modeling, a multi-zone model was developed. For this purpose, the detailed-chemistry code SENKIN from the CHEMKIN library was modified. In a previous paper, the authors explained how piston motion and a heat transfer model were implemented in the SENKIN code to make it applicable to engine modeling. The single-zone model developed was successfully implemented in the engine cycle simulation code AVL BOOST™. A multi-zone model, including a crevice volume, a quench layer and multiple core zones, is introduced here. A temperature distribution specified over these zones gives this model a wider range of application than the single-zone model, since fuel efficiency, emissions and heat release can now be predicted more accurately. The SENKIN-BOOST multi-zone model predictions are compared with experimental data.
Technical Paper

HCCI Combustion Using Charge Stratification for Combustion Control

2007-04-16
2007-01-0210
This work evaluates the effect of charge stratification on combustion phasing, rate of heat release and emissions for HCCI combustion. Engine experiments in both optical and traditional single cylinder engines were carried out with PRF50 as fuel. The amount of stratification as well as injection timing of the stratified charge was varied. It was found that a stratified charge can influence combustion phasing, increasing the stratification amount or late injection timing of the stratified charge leads to an advanced CA50 timing. The NOx emissions follows the CA50 advancement, advanced CA50 timing leads to higher NOx emissions. Correlation between CA50 can also be seen for HC and CO emissions when the injection timing was varied, late injection and thereby advanced CA50 timing leads to both lower HC and CO emissions.
Technical Paper

Impact of Conventional and Electrified Powertrains on Fuel Economy in Various Driving Cycles

2017-03-28
2017-01-0903
Many technological developments in automobile powertrains have been implemented in order to increase efficiency and comply with emission regulations. Although most of these technologies show promising results in official fuel economy tests, their benefits in real driving conditions and real driving emissions can vary significantly, since driving profiles of many drivers are different than the official driving cycles. Therefore, it is important to assess these technologies under different driving conditions and this paper aims to offer an overall perspective, with a numerical study in simulations. The simulations are carried out on a compact passenger car model with eight powertrain configurations including: a naturally aspirated spark ignition engine, a start-stop system, a downsized engine with a turbocharger, a Miller cycle engine, cylinder deactivation, turbocharged downsized Miller engine, a parallel hybrid electric vehicle powertrain and an electric vehicle powertrain.
Technical Paper

Injection Orifice Shape: Effects on Spray Characteristics and Heat-Release Rate in a Large-Size Single-Cylinder Diesel Engine

1999-10-25
1999-01-3490
A series of experimental studies of diesel spray and combustion characteristics was carried out using circular, elliptic and step orifices. The experiment was performed on a 3-litre single-cylinder engine with optical access. In the engine tests, an elliptic-orifice nozzle with an aspect ratio of approximately 2:1, and a step-orifice nozzle were compared with circular-orifice nozzles. All orifices had sharp-edged inlets. The nozzles were tested at injection pressures extending from 300 to 1300 bar. The nozzles were evaluated in respect of initial spray tip velocity, penetration, spray cone angle, spray width, intermittency and heat-release. Substantial differences were observed in the spray characteristics: At an injection pressure of 300 bar, the spray width increased twice as fast in the minor axis plane of the elliptic orifice and step orifice than the circular orifices.
Technical Paper

Interaction of Downforce Generating Devices and Cooling Air Flow - A Numerical and Experimental Study on Open Wheeled Race Cars

2012-04-16
2012-01-1165
This study reflects on two areas of vehicle aerodynamics, optimising cooling performance and features that will improve the handling of the car. Both areas will have a significant impact on the overall performance of the car and at the same time these areas are linked to each other. The considered vehicle in this study was the Chalmers Formula Student 2011 Formula SAE car and the flow field was analysed using both numerical simulations as well as performing wind tunnel experiments on a 1:3-scale model of the car. The focus on increasing downforce without increasing the aerodynamic drag is particularly good in Formula SAE since fuel economy is an event at the competition. Therefore, the intention of this work is to present a study on how undertrays with different design such as added foot plates, diffuser and strakes can improve the downforce and reduce the drag.
Journal Article

Investigation of Homogeneous Lean SI Combustion in High Load Operating Conditions

2020-04-14
2020-01-0959
Homogeneous lean combustion (HLC) can be utilized to substantially improve spark ignited (SI) internal combustion engine efficiency. Higher efficiency is vital to enable clean, efficient and affordable propulsion for the next generation light duty vehicles. More research is needed to ensure robustness, fuel efficiency/NOx trade-off and utilization of HLC. Utilization can be improved by expanding the HLC operating window to higher engine torque domains which increases impact on real driving. The authors have earlier assessed boosted HLC operation in a downsized two-litre engine, but it was found that HLC operation could not be achieved above 15 bar NMEP due to instability and knocking combustion. The observation led to the conclusion that there exists a lean load limit. Therefore, further experiments have been conducted in a single cylinder research DISI engine to increase understanding of high load lean operation.
Technical Paper

Knock in Spark-Ignition Engines: End-Gas Temperature Measurements Using Rotational CARS and Detailed Kinetic Calculations of the Autoignition Process

1997-05-01
971669
Cycle-resolved end-gas temperatures were measured using dual-broadband rotational CARS in a single-cylinder spark-ignition engine. Simultaneous cylinder pressure measurements were used as an indicator for knock and as input data to numerical calculations. The chemical processes in the end-gas have been analysed with a detailed kinetic mechanism for mixtures of iso-octane and n-heptane at different Research Octane Numbers (RON'S). The end-gas is modelled as a homogeneous reactor that is compressed or expanded by the piston movement and the flame propagation in the cylinder. The calculated temperatures are in agreement with the temperatures evaluated from CARS measurements. It is found that calculations with different RON'S of the fuel lead to different levels of radical concentrations in the end-gas. The apperance of the first stage of the autoignition process is marginally influenced by the RON, while the ignition delay of the second stage is increased with increasing RON.
Technical Paper

LES Investigation of ECN Spray G2 with an Eulerian Stochastic Field Cavitation Model

2018-04-03
2018-01-0291
Due to an ongoing trend of high injection pressures in the realm of internal combustion engines, the role of cavitation that typically happens inside the injector nozzle has become increasingly important. In this work, a large Eddy Simulation (LES) with cavitation modeled on the basis of an Eulerian Stochastic Field (ESF) method and a homogeneous mixture model is performed to investigate the role of cavitation on the Engine Combustion Network (ECN) spray G2. The Eulerian stochastic field cavitation model is coupled to a pressure based solver for the flow, which lowers the computational cost, thereby making the methodology highly applicable to realistic injector geometries. Moreover, the nature of the Eulerian stochastic field method makes it more convenient to achieve a high scalability when applied to parallel cases, which gives the method the edge over cavitation models that are based on Lagrangian tracking.
Technical Paper

Large Eddy Simulation of Stratified Combustion in Spray-guided Direct Injection Spark-ignition Engine

2018-04-03
2018-01-1420
Stratified combustion in gasoline engines constitutes a promising means of achieving higher thermal efficiency for low to medium engine loads than that achieved with combustion under standard homogeneous conditions. However, creating a charge that leads to a stable efficient low-emission stratified combustion process remains challenging. Combustion through a stratified charge depends strongly on the dynamics of the turbulent fuel-air mixing process and the flame propagation. Predictive simulation tools are required to elucidate this complex mixing and combustion process under stratified conditions. For the simulation of mixing processes, combustion models based on large-eddy turbulence modeling have typically outperformed the standard Reynolds averaged Navier-Stokes methods.
Technical Paper

Large-Eddy Simulation on the Effects of Fuel Injection Pressure on the Gasoline Spray Characteristics

2019-01-15
2019-01-0060
Increasing the injection pressure in gasoline direct injection engines has a substantial potential to reduce emissions while maintaining a high efficiency in spark ignition engines. Present gasoline injectors are operating in the range of 20 MPa to 25 MPa. Now there is an interest in higher fuel injection pressures, for instance, around 40 MPa, 60 MPa and even higher pressures, because of its potential for further emission reduction and fuel efficiency improvements. In order to fully utilize the high-pressure fuel injection technology, a fundamental understanding of gasoline spray characteristics is vital to gain insight into spray behavior under such high injection pressures. The understanding achieved may also be beneficial to improve further model development and facilitate the integration of such advanced injection systems into future gasoline engines.
Technical Paper

Methane Direct Injection in an Optical SI Engine - Comparison between Different Combustion Modes

2019-01-15
2019-01-0083
Natural gas, biogas, and biomethane are attractive fuels for compressed natural gas (CNG) engines because of their beneficial physical and chemical characteristics. This paper examines three combustion modes - homogeneous stoichiometric, homogeneous lean burn, and stratified combustion - in an optical single cylinder engine with a gas direct injection system operating with an injection pressure of 18 bar. The combustion process in each mode was characterized by indicated parameters, recording combustion images, and analysing combustion chemiluminescence emission spectra. Pure methane, which is the main component of CNG (up to 98%) or biomethane (> 98 %), was used as the fuel. Chemiluminescence emission spectrum analysis showed that OH* and CN* peaks appeared at their characteristic wavelengths in all three combustion modes. The peak of OH* and broadband CO2* intensities were strongly dependent on the air/fuel ratio conditions in the cylinder.
X