Refine Your Search

Topic

Author

Search Results

Technical Paper

A Procedure for Measuring Instrument Panel Visibility

1972-02-01
720232
A procedure has been developed for measuring the relative visibility of automotive instrument panel graphics and components. Through use of a Luckiesh-Moss Visibility Meter, discreet values of visibility can be assigned to visual targets and related to driver reaction time. Also, eyes off the road lapsed time boundaries may be established which will define visibility requirements necessary to serve the total driver population. These requirements can be translated into meaningful guidelines or standards for visibility attributes such as size, shape, color, contrast, and position of graphics, controls, and indicators. How visibility measurements are made and interpreted and the visibility measuring facility are discussed in this paper.
Technical Paper

A Progress Report on Electromagnetic Activity of Motor Vehicle Manufacturer's Association

1973-02-01
730057
Starting in 1965 and continuing through 1972, the Radio Committee of the Motor Vehicles Manufacturers Association (MVMA) has been the coordinator of a number of electromagnetic research projects. These investigations have included extensive applications of the updated SAE Standard, Measurement of Electromagnetic Radiation From Motor Vehicles (20-1000 MHz)-SAE J551a. Furthermore, there were joint testing programs with the Electronic Industries Association which encompassed measuring degradation in the performance of Land Mobile Radio Service receivers resulting from varying levels of impulsive-type radiation from motor vehicles. In addition, efforts were expended in using statistical approaches for testing a number of hypotheses covering a conversion of impulsive vehicle noise data to the interference potential to Land Mobile receivers.
Technical Paper

Analysis of the Pelvis-Chest Interactions in Hybrid III

1995-02-01
950663
The interaction ILLEGIBLEf the chest of the Hybrid III dummy with the air bag restrILLEGIBLEt system during a crash is complex. Forces applied to one ILLEGIBLEmponent of the dummy can generate an unexpected response in a distal part. Motion, both linear and angular, of the pelvis during impact can create an enigmatic spike in the acceleration of the chest. Because significant changes in the chest acceleration response can affect the development of an airbag system, this pelvis-chest interaction is cause for concern. The factors that appear to affect the chest acceleration spike as a result of the pelvis-chest interaction are: the mass moment of inertia of the pelvis, the interaction of the pelvis with the femur, the characteristic of the lumbar spine, and the differential velocity of the pelvis with respect to the chest.
Technical Paper

Analytical Techniques for Designing Riding Quality Into Automotive Vehicles

1967-02-01
670021
This paper describes techniques that predict and analyze dynamic response of vehicles traversing random rough surfaces. Road irregularities are statistically classified by frequency and amplitude distribution. This classification determines the nature of random inputs to mathematical vehicle models and allows computer prediction of dynamic response of a simulated vehicle. Once inputs and models are defined, parametric analysis with output criteria specified statistically can be performed. This allows prediction of vehicle riding quality and evaluation of design concepts. Statistical analysis of accelerometer measurements on actual vehicles permits verification of the design process and meaningful comparison between vehicles.
Technical Paper

Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop

1968-02-01
680093
Strain analysis of stampings is explained. The system is based on the strain distributions obtained from 0.2 in. inter-locking circle grid patterns etched on blanks. The strain distributions are related to a developed formability limit curve and the mechanical properties of the gridded blank. The evaluation of the graphic relation of the strains to the formability limit enables the press shop to determine what factors should be changed to produce stampings with less scrap and lower cost.
Technical Paper

Automated Test Request and Data Acquisition System for Vehicle Emission Testing

1997-02-24
970273
Due to new regulations, emissions development and compliance testing have become more complex. The amount of data acquired, the number of test types, and the variety of test conditions have increased greatly. Due to this increase, managing test information from request to analysis of results has become a critical factor. Also, automated test result presentation and test storage increases the value and quality of each test. This paper describes a computer system developed to cope with the increasing complexity of vehicle emission testing.
Technical Paper

Body Aerodynamics and Heater Air Flow

1966-02-01
660388
The heater air flow rate is a function not only of the heater itself but also of the size and location of the heater system air inlets, the car body air outlets, and the body surface pressure at these inlets and outlets. Favorable pressure conditions generally exist at the typical top cowl heater air inlet; however, the aerodynamics of each particular vehicle should be studied to confirm the existence of these conditions. Little consideration has been given to body air outlet pressure conditions since body leakage paths have generally served as adequate air outlets; but, as body leakage is reduced, specific air outlets must be considered and a knowledge of aerodynamics is essential to the achieving of appropriately sized and appropriately located air outlets.
Technical Paper

Characterization of Lunar Surfaces and Concepts of Manned Lunar Roving Vehicles

1963-01-01
630078
This paper discusses the development of criteria necessary to establish reliable lunar exploration and construction vehicle concepts. To establish the basis for the development of these criteria, an exploration mission using the presently conceived Apollo launch vehicle system is described. The criteria resulting from the study of the contribution made by the hostile lunar environment and the life support system requirements within the framework of the selected mission are established. Soils testing in a hard vacuum is described, as are tests of models under simulated lunar terrain environment. Two lunar vehicle configurations are reviewed, including design parameters and subsystem development.
Technical Paper

Comparison of Energy Management Materials for Head Impact Protection

1997-02-24
970159
Energy management materials are widely used in automotive interiors in instrument panel, knee bolster, and door absorber applications to reduce the risk of injury to an occupant during a crash. Automobile manufacturers must meet standards set by the National Highway Traffic Safety Administration (NHTSA) that identify maximum levels of injury to an occupant. The recent NHTSA upgrade to the Federal Motor Vehicle Safety Standard (FMVSS) 201 test procedure(1) for upper interior head impact protection has prompted energy management materials' use in several new areas of affected vehicles. While vehicle evaluations continue, results to date show that energy management foams can be effective in reducing the head injury criterion [HIC(d)] to acceptable government and OEM levels.
Technical Paper

Cycle-by-Cycle Analysis of HC Emissions During Cold Start of Gasoline Engines

1995-10-01
952402
A cycle-by-cycle analysis of HC emissions from each cylinder of a four-stroke V-6, 3.3 L production engine was made during cold start. The HC emissions were measured in the exhaust port using a high frequency flame ionization detector (FID). The effect of the initial startup position of the piston and valves in the cycle on combustion and HC emissions from each cylinder was examined. The mass of fuel injected, burned and emitted was calculated for each cycle. The equivalence ratio of the charge in the firing cycles was determined. The analysis covered the first 120 cycles and included the effect of engine transients on HC emissions.
Technical Paper

Design Features of the JUNKERS 211B AIRCRAFT ENGINE

1942-01-01
420123
THE Junkers 211B engine follows the usual German practice of very large displacements and conservative mean effective pressures and rotative speeds. However, the relative light weight per unit of displacement results in a net weight per horsepower that is not far above its competitors. Fully automatic devices which control propeller speed, manifold pressure, mixture ratio, spark advance, and supercharger gear ratio follow the German policy of removing all possible distractions from the pilot. This is one of three large liquid-cooled engines known to be produced in quantity in Germany; it powers an impressive percentage of the Luftwaffe. While of external appearance and displacement that resemble the Daimler-Benz DB-601 engine, the fundamental construction, detail design practice, and metallurgy of the Junkers 211B are surprisingly different.
Technical Paper

Determination of Coastdown Mechanical Loss Ambient Correction Factors for use with J2263 Road Tests

1997-02-24
970269
Testing for vehicle emissions and fuel economy certification occurs primarily on chassis dynamometers in a laboratory setting and therefore the actual road conditions, such as forces due to tire rolling resistance and internal friction, must be simulated. Test track coastdown procedures measure vehicle road load forces and produce an equation which relates these forces to velocity. The recent inclusion of onboard anemometry has allowed the coastdown procedure to account for varying wind effects; however, the new anemometer based mechanical loss coefficients do not take into account ambient weather conditions. The two purposes of this study are (1) to determine the new tire rolling resistance temperature correction coefficient that should be used when test ambient temperature is different from the standard reference value of 68°F, and (2) to investigate the effects of auxiliary measurements, such as other ambient conditions and vehicle settings, on this correction coefficient.
Technical Paper

Development Highlights and Unique Features of New Chrysler V-8 Engine

1951-01-01
510196
THE design and development of the new valve-in-head V-8 Chrysler engine of 7.5 compression ratio are described here. Among the features discussed by the authors are: the hemispherical combustion chamber, V-8 cylinder arrangement, double-breaker distributor, “thermal flywheel” on automatic choke, and exhaust-heated and water-jacketed throttle bodies. The hemispherical combustion chamber was adopted after it had displayed excellent volumetric and indicated thermal efficiencies, and an ability to maintain these high efficiencies in service. The high volumetric efficiency, for example, is considered to be due to such design features as valves not crowded together, nor surrounded closely by the combustion-chamber walls. They are thereby fully effective in the flow of the fuel-air mixture and the exhaust gases. The authors also present performance data for this engine, which, at full throttle, develops 180 hp at 4000 rpm and 312 ft-lb of torque at 2000 rpm.
Technical Paper

Dodge Ram Pickup Vehicle: From Human Factors Development to Production Intent Metal Assembly

1993-11-01
932988
To evaluate and refine interior architecture of the new Dodge Ram pickup truck three years before production, a road worthy interior package validation buck was built using a fiberglass body shell. Molds for the shell were made using CAD/CAM techniques. Advanced CAD/CAM techniques were used to build the interior buck of a subsequent model from individual panels molded in carbon fiber. This buck also included inner structural panels and interior trim components taken from CAD data. For this and subsequent new vehicle programs, refinement of construction techniques allows the bucks to serve as aids in product design and manufacturing feasibility studies.
Technical Paper

Energy and the Automobile - General Factors Affecting Vehicle Fuel Consumption

1973-02-01
730518
Since 1968, vehicle weight increases and emissions controls have reduced fuel economy substantially. Additional losses in economy and acceleration will be experienced through 1976. Recommendations are made to lessen the impact of the predicted losses. Factors influencing fuel economy and acceleration are examined for an intermediate car. Changes in engine efficiency and displacement, compression ratio, torque converter, transmission, axle ratio, aerodynamic drag, tires, accessories, vehicle weight, and emissions controls are examined. When practical, the effects of 10% changes are analyzed. Comparisons are also made with a subcompact and a luxury vehicle.
Technical Paper

Energy-Absorbing Polyurethane Foam to Improve Vehicle Crashworthiness

1995-02-01
950553
Federal legislation mandates that automotive OEMS provide occupant protection in collisions involving front and side impacts This legislation, which is to be phased-in over several years, covers not only passenger cars but also light-duty trucks and multipurpose passenger vehicles (MPVs) having a gross vehicle weigh rating (GVWR) of 8,500 lb (3,850 kg) or less. During a frontal impact, occupants within the vehicle undergo rapid changes in velocity. This is primarily due to rapid vehicle deceleration caused by the rigid nature of the vehicle's metal frame components and body assembly. Many of today's vehicles incorporate deformable, energy-absorbing (EA) structures within the vehicle structure to manage the collision energy and slow the deceleration which in turn can lower the occupant velocity relative to the vehicle. Occupant velocities can be higher in light-duty trucks and MPVs having a full-frame structure resulting in increased demands on the supplemental restraint system (SRS).
Technical Paper

Engine Misfire Detection by Ionization Current Monitoring

1995-02-01
950003
Engine misfires cause a negative impact on exhaust emissions. Severe cases could damage the catalyst system permanently. These are the basic reasons why CARB (California Air Resources Board) mandated the detection of engine misfires in their OBD II (On-Board Diagnostics II) regulations. For the last several years, automobile manufacturers and their suppliers have been working diligently on various solutions for the “Misfire Detection” challenge. Many have implemented a solution called “Crankshaft Velocity Fluctuation” (CVF), which utilizes the crank sensor input to calculate the variation of the crankshaft rotational speed. The theory is that any misfires will contribute to a deceleration of the crankshaft velocity due to the absence of pressure torque. This approach is marginal at best due to the fact that there could be many contributors to a crankshaft velocity deceleration under various operating conditions. To sort out which is a true misfire is a very difficult task.
Technical Paper

Environment, Health and Safety: A Decision Model for Product Development

1996-02-01
960407
Environmental issues continue to emerge as a significant concern of the public today. End-of-pipe controls have proven to be costly solutions and have not addressed the root causes of environmental issues. Pollution prevention programs better address concerns and produce more cost-effective solutions. Additionally, regulations can no longer be addressed in isolation. Industry must view regulatory requirements as other business matters are addressed. The integration of regulatory requirements into the business plan focuses the cost of compliance on appropriate products or processes and exposes formerly hidden costs. For highly outsourced OEM's, supplier participation is critical to the success of any program. The bounds of Early Supplier Involvement (ESI) are extended through an integrated global raw material strategy that encompasses regulated substance control, material selection and rationalization, and design for recyclability/separability.
Technical Paper

Evaluation of Automotive Front Seat Structure Constructed of Polymer Composite

1992-02-01
920335
Seats play an important role in determining customer satisfaction and safety. They also represent three to five percent of the overall vehicle cost and weight. Therefore, automotive manufacturers are continuously seeking ways to improve the areas of comfort, safety, reliability, cost and weight within the seat system. The purpose of this paper is to review the development of an automotive front seat constructed of injection molded nylon frames and metal mechanisms. This development program was initiated for the purpose of reducing vehicle weight while increasing the reliability and safety of the front seats. This paper will review the material and process selection decision, a design overview, the performance criteria and the results of tests performed on the injection molded front seats.
X