Refine Your Search

Topic

Author

Search Results

Journal Article

Advancing Platooning with ADAS Control Integration and Assessment Test Results

2021-04-06
2021-01-0429
The application of cooperative adaptive cruise control (CACC) to heavy-duty trucks known as truck platooning has shown fuel economy improvements over test track ideal driving conditions. However, there are limited test data available to assess the performance of CACC under real-world driving conditions. As part of the Cummins-led U.S. Department of Energy Funding Opportunity Announcement award project, truck platooning with CACC has been tested under real-world driving conditions and the results are presented in this paper. First, real-world driving conditions are characterized with the National Renewable Energy Laboratory’s Fleet DNA database to define the test factors. The key test factors impacting long-haul truck fuel economy were identified as terrain and highway traffic with and without advanced driver-assistance systems (ADAS).
Technical Paper

Alternate Approach: Acoustics and Cooling Performance Management

2018-04-03
2018-01-0084
Development of quick and efficient numerical tools is key to the design of industrial machines. While Computational Fluid Dynamics (CFD) techniques based on Navier Stokes (N-S) and Lattice Boltzman methods are becoming popular, predicting aeroacoustic behavior for complex geometries remains computationally intensive for design process and iteration. The goal of this paper is to evaluate application Navier-Stokes approach coupled with Ffowcs Williams and Hawkings (FW-H), and Broad-band Noise Model (BNS) to evaluate noise levels and predict design direction for industrial applications. Steady-state RANS based approaches are used to evaluate under-hood cooling performance and fan power demand. At each design iteration, noise levels and strength of noise source are evaluated using Gutin’s and broad-band noise models, respectively along with cooling performance. Each design feature selected for the final design has lower fan power and noise level with improved cooling.
Technical Paper

Analysis Lead Drivability Assessment

2015-09-29
2015-01-2804
Drivability and powertrain refinement continue to gain importance in the assessment of overall vehicle quality. This notion has transcended its light duty origins and is beginning to gain considerable traction in the medium and heavy duty markets. However, with drivability assessment and refinement also comes the high costs associated with vehicle testing, including items such as test facilities, prototype component evaluation, fuel and human resources. Taking all of this into account, any and all measures must be used to reduce the cost of drivability evaluation and powertrain refinement. This paper describes an analysis based co-simulation methodology, where sophisticated powertrain simulation and objective drivability evaluation tools can be used to predict vehicle drivability. A fast running GT power engine model combined with simplified controls representation in Matlab/Simulink was used to predict engine transients and responses.
Technical Paper

Assessment of Condensation Particle Counter-Based Portable Solid Particle Number System for Applications with High Water Content in Exhaust

2024-04-22
2024-01-5048
The Particle Number–Portable Emission Measurement System (PN-PEMS) came into force with Euro VI Phase E regulations starting January 1, 2022. However, positive ignition (PI) engines must comply from January 1, 2024. The delay was due to the unavailability of the PN-PEMS system that could withstand high concentrations of water typically present in the tailpipe (TP) of CNG vehicles, which was detrimental to the PN-PEMS systems. Thus, this study was designed to evaluate the condensation particle counter (CPC)-based PN-PEMS measurement capabilities that was upgraded to endure high concentration of water. The PN-PEMS measurement of solid particle number (SPN23) greater than 23 nm was compared against the laboratory-grade PN systems in four phases. Each phase differs based upon the PN-PEMS and PN system location and measurements were made from three different CNG engines. In the first phase, systems measured the diluted exhaust through constant volume sampler (CVS) tunnel.
Technical Paper

Comparison of SCR Catalyst Performance on RMC SET Emission Cycle between an Engine and a High Flow Burner Rig

2013-04-08
2013-01-1070
Government agencies like EPA play an important role through regulation to reduce emissions and fuel consumption and to drive technological developments to reduce the environmental impact of burning petroleum fuels. Emissions testing and control is one of the leading and growing fields in the development of modern vehicles. Recently, Cummins Emissions Solutions (CES) and Southwest Research Institute (SwRI) worked jointly in order to achieve a method to conduct emissions testing efficiently and effectively. The collaborative work between the two organizations led to the usage of FOCAS HGTR™ (a diesel-based burner test rig at SwRI) to simulate the exhaust conditions generated by a 2010 ISX Cummins production engine operating over an EPA standard Ramped Modal Cycle Supplemental Emissions Test (RMC SET) cycle.
Technical Paper

Correlation of Cylinder Head Gasket Sealing Analysis Results between Gasket Element and 3D Continuum Element

2020-03-10
2020-01-0049
A head gasket is a component that sits between the engine block/liner and cylinder head(s) in an internal combustion engine. Its purpose is to seal high pressure combustion gasses in the cylinders and to seal coolant and engine oil. It is the most critical sealing application in an engine. As a general practice, the load deflection(L/D) characteristic is generated by the gasket manufacturer for edge molded or composite gasket types. However, in the case of a solid-sheet metallic gasket, where the gasket is expected to undergo localized yielding to provide adequate conformance and sealing, usually supplier may not be able to provide the required L/D curve due to difficulties to experimentally separate the large loads and small displacements from the elastic loads and deflections of the experimental apparatus. In absence of L/D curve, the typical analysis approach is to model gasket as 3D continuum elements available in ansys by considering nonlinear material and frictional contacts.
Journal Article

Development and Demonstration of a Class 6 Range-Extended Electric Vehicle for Commercial Pickup and Delivery Operation

2020-04-14
2020-01-0848
Range-extended hybrids are an attractive option for medium- and heavy-duty commercial vehicle fleets because they offer the efficiency of an electrified powertrain with the driving range of a conventional diesel powertrain. The vehicle essentially operates as if it was purely electric for most trips, while ensuring that all commercial routes can be completed in any weather conditions or geographic terrain. Fuel use and point-source emissions can be significantly reduced, and in some cases eliminated, as many shorter routes can be fully electrified with this architecture. Under a U.S. Department of Energy (DOE)-funded project for Medium- and Heavy-Duty Vehicle Powertrain Electrification, Cummins has developed a plug-in hybrid electric Class 6 truck with a range-extending engine designed for pickup and delivery application.
Technical Paper

Development of a Kinetic Model to Evaluate Water Storage on Commercial Cu-Zeolite SCR Catalysts during Cold Start

2017-03-28
2017-01-0968
Commercial Cu-Zeolite SCR catalyst can store and subsequently release significant amount of H2O. The process is accompanied by large heat effects. It is critical to model this phenomenon to design aftertreatment systems and to provide robust tuning strategies to meet cold start emissions and low temperature operation. The complex reaction mechanism of water adsorption and desorption over a Cu-exchanged SAPO-34 catalyst at low temperature was studied through steady state and transient experiments. Steady state isotherms were generated using a gravimetric method and then utilized to predict water storage interactions with respect to feed concentration and catalyst temperature. Transient temperature programmed desorption (TPD) experiments provided the kinetic information required to develop a global kinetic model from the experimental data. The model captures fundamental characteristics of water adsorption and desorption accompanied by the heat effects.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

Diesel Engine Noise Source Visualization with Wideband Acoustical Holography

2017-06-05
2017-01-1874
Wideband Acoustical Holography (WBH), which is a monopole-based, equivalent source procedure (J. Hald, “Wideband Acoustical Holography,” INTER-NOISE 2014), has proven to offer accurate noise source visualization results in experiments with a simple noise source: e.g., a loudspeaker (T. Shi, Y. Liu, J.S. Bolton, “The Use of Wideband Holography for Noise Source Visualization”, NOISE-CON 2016). From a previous study, it was found that the advantage of this procedure is the ability to optimize the solution in the case of an under-determined system: i.e., when the number of measurements is much smaller than the number of parameters that must be estimated in the model. In the present work, a diesel engine noise source was measured by using one set of measurements from a thirty-five channel combo-array placed in front of the engine.
Technical Paper

Diesel Engines Gear Whine: Production Plant Perspective

2017-06-05
2017-01-1809
Engine noise is one of the significant aspects of product quality for light and medium duty diesel engine market applications. Gear whine is one of those noise issues, which is considered objectionable and impacts the customer’s perception of the product quality. Gear whine could result due to defects in the gear manufacturing process and/or due to inaccurate design of the gear macro and micro geometry. The focus of this technical paper is to discuss gear whine considerations from the production plant perspective. This includes quick overview of the measurement process, test cell environment, noise acceptance criteria considerations. A gear whine case study is presented based on the data collected in the test cell at the engine plant. Gear whine data acquired on current product and next generation of prototype engines is analyzed and presented. This paper concludes by highlighting the lessons learned from the case study.
Technical Paper

Drive by Noise System and Corresponding Facility Upgrades for Test Efficiency, Data Quality and Customer Satisfaction

2011-05-17
2011-01-1611
An existing pass by noise data acquisition system was upgraded to provide the sophisticated data analysis techniques and test site efficiency required to comply with the current and future drive by noise regulations. Use of six sigma tool such as voice of the customer helped in defining the customer requirements which were then translated into the desired engineering characteristics using QFD. Pugh concept matrix narrowed down the best option suitable for the test site modifications taking into account the critical constraints such as test complexity, system cost & transparency to the existing drive by noise setup. Features of the new system include data telemetry, frequency analysis, portability and efficient data management through the use of advanced data acquisition system. Wireless mode of the data transmission helped significantly avoid most of the test site modifications, which in turn helped to reduce the overall system implementation cost.
Technical Paper

Durability Test Suite Optimization Based on Physics of Failure

2018-04-03
2018-01-0792
Dynamometer (dyno) durability testing plays a significant role in reliability and durability assessment of commercial engines. Frequently, durability test procedures are based on warranty history and corresponding component failure modes. Evolution of engine designs, operating conditions, electronic control features, and diagnostic limits have created challenges to historical-based testing approaches. A physics-based methodology, known as Load Matrix, is described to counteract these challenges. The technique, developed by AVL, is based on damage factor models for subsystem and component failure modes (e.g. fatigue, wear, degradation, deposits) and knowledge of customer duty cycles. By correlating dyno test to field conditions in quantifiable terms, such as customer equivalent miles, more effective and efficient durability test suites and test procedures can be utilized. To this end, application of Load Matrix to a heavy-duty diesel engine is presented.
Journal Article

Emissions Certification Vehicle Cycles Based on Heavy Duty Engine Test Cycles

2012-04-16
2012-01-0878
This paper describes the development vehicle cycles based on heavy duty engine test cycles for emissions certification. In the commercial vehicle and industrial equipment markets, emissions are evaluated using engine test cycles. For the on-highway market in the United States, these cycles include the transient heavy duty engine FTP test, and the steady state heavy duty engine SET test. Evaluation of engine only emissions is a practical approach given the diversity of applications, small volumes, and lack of vertical integration in the commercial vehicle market. However certain vehicle and powertrain characteristics can contribute significantly to fuel consumption and emissions. A number of approaches have been proposed to evaluate vehicle performance, and all of these vehicle evaluation methodologies require the selection of a vehicle cycle.
Technical Paper

Experimental Investigation of the Oil Pressure Regulator Buzz Noise on Diesel Engines

2013-05-13
2013-01-1903
Due to increasing expectations for gasoline like sound quality, today's diesel engines for light and medium duty automotive markets needs to be carefully designed from NVH perspective. Typical engine operating conditions such as low idle, light tip in, tip out demand more attention as they are more prone to generating sound quality concerns. Any abrupt change in the noise signature may be perceived as a sign of malfunction and could have a potential to generate warranty claims. In this paper, an experimental investigation was carried out to determine the root cause of the transient oil pressure regulator buzz noise which occurred during no load transients at low engine speeds. The root cause of the objectionable noise was found to be associated with the impacts of the regulator plunger on the valve seat at certain engine speeds. Noise and vibration diagnostic tests confirmed that the plunger impacts at the seat caused the objectionable buzz noise.
Book

Fundamentals of Engineering High-Performance Actuator Systems

2016-12-01
Actuators are the key to allowing machines to become more sophisticated and perform complex tasks that were previously done by humans, providing motion in a safe, controlled manner. As defined in this book, actuator design is a subset of mechanical design. It involves engineering the mechanical components necessary to make a product move as desired. Fundamentals of Engineering High-Performance Actuator Systems, by Ken Hummel, was written as a text to supplement actuator design courses, and a reference to engineers involved in the design of high-performance actuator systems. It highlights the design approach and features what should be considered when moving a payload at precision levels and/or speeds that are not as important in low-performance applications.
Technical Paper

Future Challenges for Engine Manufacturers in View of Future Emissions Legislation

2017-05-10
2017-01-1923
Countries around the world are expected to continue to adopt more stringent emissions standards for heavy-duty markets for both oxides of nitrogen (NOx) and greenhouse gases (GHG). While there is uncertainty about the timing and extent of these regulations, it is clear that significant reductions will be required to address urban air pollution and climate change concerns. The rate and pace of technology evolution and how it will affect the energy pathways for commercial transportation and industrial use are dependent on multiple variables such as national energy and environmental policies and public-private partnerships. Although it adds complexity, the engine system has great potential to evolve as it continues to be highly integrated into the super system for which it is producing power. This paper examines the potential opportunities and challenges for engine manufacturers to continue to be the supplier of power to vehicles and equipment of the future.
Technical Paper

Heavy-Duty Engines Exhaust Sub-23 nm Solid Particle Number Measurements

2021-02-24
2021-01-5024
The measurement of solid particles down to 10 nm is being incorporated into global technical regulations (GTR). This study explores the measurement of solid particles below 23 nm by using both current and proposed particle number (PN) systems having different volatile particle remover (VPR) methodologies and condensation particle counter (CPC) cutoff diameters. The measurements were conducted in dynamometer test cells using ten diesel and eight natural gas (NG) engines that were going under development for a variety of global emission standards. The PN systems measured solid PN from more than 700 test cycles. The results from the preliminary campaign showed a 10-280% increase in PN emissions with the inclusion of particles below 23 nm.
Technical Paper

Impact of Using Low Thermal Mass Turbine Housing on Exhaust Temperature with Implication on Aftertreatment Warm-Up Benefit for Emissions Reduction

2020-09-02
2020-01-5083
The present study examines the impact of using low thermal mass (LTM) turbine housing designs on the transient characteristics of the turbine outlet temperature for a light-duty diesel standard certification cycle (FTP75). For a controlled exhaust flow, the turbine outlet temperature will directly determine the impact on an aftertreatment system warm-up from a cold state, typical of engine-off and engine idling conditions. The performance of the aftertreatment system such as a Selective Catalytic Reduction (SCR) system is highly dependent on how quickly it warms up to its desirable temperature to be able to convert the harmful oxides of Nitrogen (NOx) to gaseous Nitrogen. Previous works have focused on mostly insulating the exhaust manifold and turbine housing to conserve the heat going into the aftertreatment system. The use of LTM turbine housing has not been previously considered as a means for addressing this requirement.
Journal Article

Investigation of the Impact of Real-World Aging on Diesel Oxidation Catalysts

2012-04-16
2012-01-1094
Real-world operation of diesel oxidation catalysts (DOCs), used in a variety of aftertreatment systems, subjects these catalysts to a large number of permanent and temporary deactivation mechanisms. These include thermal damage, induced by generating exotherm on the catalyst; exposure to various inorganic species contained in engine fluids; and the effects of soot and hydrocarbons, which can mask the catalyst in certain operating modes. While some of these deactivation mechanisms can be accurately simulated in the lab, others are specific to particular engine operation regimes. In this work, a set of DOCs, removed from prolonged service in the field, has been subjected to a detailed laboratory study. Samples obtained from various locations in these catalysts were used to characterize the extent and distribution of deactivation.
X