Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Autonomy and Intelligent Technologies for Advanced Inspection Systems

2013-09-17
2013-01-2092
This paper features a set of advanced technologies for autonomy and intelligence in advanced inspection systems of facility operations. These technologies offer a significant contribution to set a path to establish a system and an operating environment with autonomy and intelligence for inspection, monitoring and safety via gas and ambient sensors, video mining and speech recognition commands on unmanned ground vehicles and other platforms to support operational activities in the Cryogenics Test bed and other facilities and vehicles. These advanced technologies are in current development and progress and their functions and operations require guidance and formulation in conjunction with the development team(s) toward the system architecture.
Technical Paper

EVA Operational Enhancements and ASEM

1992-07-01
921341
Among the many firsts which will occur on STS-49, the maiden voyage of the Space Shuttle Endeavour, a Space Station Freedom (SSF) experiment entitled Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) promises to test the boundaries of EVA operational capabilities. Should the results be favorable, station and other major users of EVA stand to benefit from increased capabilities. Even the preparation for the ASEM experiment is serving as a pathfinder for complex SSF operations. This paper reviews the major tasks planned for ASEM and discusses the operational analogies investigators are attempting to draw between ASEM and SSF. How these findings may be applied to simplify station assembly and maintenance will also be discussed.
Technical Paper

First Astronaut - Rover Interaction Field Test

2000-07-10
2000-01-2482
The first ever Astronaut - Rover (ASRO) Interaction Field Test was conducted successfully on February 22-27, 1999, in Silver Lake, Mojave Desert, California in a representative surface terrain. This test was a joint effort between the NASA Ames Research Center, Moffett Field, California and the NASA Johnson Space Center, Houston, Texas to investigate the interaction between humans and robotic rovers for potential future planetary surface exploration. As prototype advanced planetary surface space suit and rover technologies are being developed for human planetary surface exploration, it is desirable to better understand the interaction and potential benefits of an Extravehiclar Activity (EVA) crewmember interacting with a robotic rover. This interaction between an EVA astronaut and a robotic rover is seen as complementary and can greatly enhance the productivity and safety of surface excursions.
Technical Paper

Human and Robotic Enabling Performance System Development and Testing

2005-07-11
2005-01-2969
With a renewed focus on manned exploration, NASA is beginning to prepare for the challenges that lie ahead. Future manned missions will require a symbiosis of human and robotic infrastructure. As a step towards understanding the roles of humans and robots in future planetary exploration, NASA headquarters funded ILC Dover and the University of Maryland to perform research in the area of human and robotic interfaces. The research focused on development and testing of communication components, robotic command and control interfaces, electronic displays, EVA navigation software and hardware, and EVA lighting. The funded research was a 12-month effort culminating in a field test with NASA personnel.
Technical Paper

Human-Centric Teaming in a Multi-Agent EVA Assembly Task

2004-07-19
2004-01-2485
NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower. An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of human astronauts with the survivability and physical capabilities of highly dexterous space robots is proposed. A 1-g test featuring two NASA/DARPA Robonaut systems working side-by-side with a suited human subject is conducted to evaluate human-robot teaming strategies in the context of a simulated EVA assembly task based on the STS-61B ACCESS flight experiment.
Technical Paper

Human-rating Automated and Robotic Systems — How HAL Can Work Safely with Astronauts

2009-07-12
2009-01-2527
Long duration human space missions, as planned in the Vision for Space Exploration, will not be possible without applying unprecedented levels of automation to support the human endeavors. The automated and robotic systems must carry the load of routine “housekeeping” for the new generation of explorers, as well as assist their exploration science and engineering work with new precision. Fortunately, the state of automated and robotic systems is sophisticated and sturdy enough to do this work — but the systems themselves have never been human-rated as all other NASA physical systems used in human space flight have. Our intent in this paper is to provide perspective on requirements and architecture for the interfaces and interactions between human beings and the astonishing array of automated systems; and the approach we believe necessary to create human-rated systems and implement them in the space program.
Technical Paper

Micro-Flying Robotics in Space Missions

2005-10-03
2005-01-3405
The Columbia Accident Investigation Board issued a major recommendation to NASA. Prior to return to flight, NASA should develop and implement a comprehensive inspection plan to determine the structural integrity of all Reinforced Carbon-Carbon (RCC) system components. This inspection plan should take advantage of advanced non-destructive inspection technology. This paper describes a non-intrusive technology with a micro-flying robot to continuously monitor inside a space vehicle for any stress related fissures, cracks and foreign material embedded in walls, tubes etc.
Technical Paper

Navigation in a Challenging Martian Environment Using Data Mining Techniques

2005-10-03
2005-01-3383
This paper discussed how data mining techniques could give advantage to the robot in navigation, in terms of speed. The input of our navigation system is the sensory information collected by the robot's equipped landmark sensor and infra-red sensor, the process of the system is the proposed data mining technique, and the output of the system is the execution of the moving direction in a 2D Martian environment. The results demonstrate efficient goal-oriented navigation using data mining techniques.
Technical Paper

Operator Interfaces and Network-Based Participation for Dante II

1995-07-01
951518
Dante II, an eight-legged walking robot developed by the Dante project, explored the active volcanic crater of Mount Spurr in July 1994. In this paper, we describe the operator interfaces and the network-based participation methods used during the Dante II mission. Both virtual environment and multi-modal operator interfaces provided mission support for supervised control of Dante II. Network-based participation methods including message communications, satellite transmission, and a World-Wide Web server enabled remote science and public interaction. We believe that these human-machine interfaces represent a significant advance in robotic technologies for exploration.
Technical Paper

The NASA Ames Controlled Environment Research Chamber - Present Status

1994-06-01
941488
The Controlled Environment Research Chamber (CERC) at the NASA Ames Research Center was created for early-on investigation of promising new technologies for life support of advanced space exploration missions. The CERC facility is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. The CERC, along with a human-powered centrifuge, a planetary terrain simulator, advanced displays, and a virtual reality capability, is able to develop and demonstrate applicable technologies for future planetary exploration. There will be several robotic mechanisms performing exploration tasks external to the habitat that will be controlled through the virtual environment to provide representative workloads for the crew.
Technical Paper

VEVI: A Virtual Environment Teleoperations Interface for Planetary Exploration

1995-07-01
951517
Remotely operating complex robotic mechanisms in unstructured natural environments is difficult at best. When the communications time delay is large, as for a Mars exploration rover operated from Earth, the difficulties become enormous. Conventional approaches, such as rate control of the rover actuators, are too inefficient and risky. The Intelligent Mechanisms Laboratory at the NASA Ames Research Center has developed over the past four years an architecture for operating science exploration robots in the presence of large communications time delays. The operator interface of this system is called the Virtual Environment Vehicle Interface (VEVI), and draws heavily on Virtual Environment (or Virtual Reality) technology. This paper describes the current operational version of VEVI, which we refer to as version 2.0. In this paper we will describe the VEVI design philosophy and implementation, and will describe some past examples of its use in field science exploration missions.
X