Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Finite Element Model of the TRL Honeycomb Barrier for Compatibility Studies

2005-04-11
2005-01-1352
A finite element model of the Transport Research Laboratory (TRL) honeycomb barrier, which is being proposed for use in vehicle compatibility studies, has been developed for use in LSDYNA. The model employs penalty parameters to enforce continuity between adjacent finite elements of the honeycomb barrier. Results of impact tests with indentors of various shapes and sizes were used to verify the performance of the computational model. Numerical simulations show reasonably good agreement with the test results.
Journal Article

A Method for Identifying Most Significant Vehicle Parameters for Controller Performance of Autonomous Driving Functions

2019-04-02
2019-01-0446
In this paper a method for the identification of most significant vehicle parameters influencing the behavior of a lateral control system of autonomous car is presented. Requirements for the design stage of the controller need to consider many uncertainties in the plant. While most vehicle properties can be compensated by an appropriate tuning of the control parameters, other vehicle properties can change significantly during usage. The control system is evaluated based on performance measures. Analyzed parameters comprise functional tire characteristics, mass of the vehicle and position of its center of gravity. Since the parameters are correlated, but Sobol’ sensitivity analysis assumes decorrelated inputs, random variation yields no reasonable results. Furthermore, the variation of each parameter or set of parameters is not applicable since the numbers of required simulations is increased significantly according to input dimension.
Technical Paper

A Modular Battery Management System for HEVs

2002-06-03
2002-01-1918
Proper electric and thermal management of an HEV battery pack, consisting of many modules of cells, is imperative. During operation, voltage and temperature differences in the modules/cells can lead to electrical imbalances from module to module and decrease pack performance by as much as 25%. An active battery management system (BMS) is a must to monitor, control, and balance the pack. The University of Toledo, with funding from the U.S. Department of Energy and in collaboration with DaimlerChrysler and the National Renewable Energy Laboratory has developed a modular battery management system for HEVs. This modular unit is a 2nd generation system, as compared to a previous 1st generation centralized system. This 2nd generation prototype can balance a battery pack based on cell-to-cell measurements and active equalization. The system was designed to work with several battery types, including lithium ion, NiMH, or lead acid.
Technical Paper

A PG-Based Powertrain Model to Generate Component Loads for Fatigue Reliability Testing

2003-03-03
2003-01-1223
Once a vehicle powertrain is designed and the first prototype is built, extensive on-board instrumentation and testing needs to be carried out at the proving grounds (PG) to generate load histograms for various components. The load histograms can then be used to carry out durability tests in the laboratory. When a component in the vehicle powertrain is changed, the load histograms need to be generated again at the proving grounds. This adds much time and money to the vehicle's development. The objective is to develop a virtual powertrain model that can be simulated through a powertrain endurance driving cycle in order to predict torque histograms and total damage. The predictions are then correlated against measured data acquired on a test vehicle that was driven through the same driving cycle at the proving grounds.
Technical Paper

A Two-Measurement Correction for the Effects of a Pressure Gradient on Automotive, Open-Jet, Wind Tunnel Measurements

2006-04-03
2006-01-0568
This paper provides a method that corrects errors induced by the empty-tunnel pressure distribution in the aerodynamic forces and moments measured on an automobile in a wind tunnel. The errors are a result of wake distortion caused by the gradient in pressure over the wake. The method is applicable to open-jet and closed-wall wind tunnels. However, the primary focus is on the open tunnel because its short test-section length commonly results in this wake interference. The work is a continuation of a previous paper [4] that treated drag only at zero yaw angle. The current paper extends the correction to the remaining forces, moments and model surface pressures at all yaw angles. It is shown that the use of a second measurement in the wind tunnel, made with a perturbed pressure distribution, provides sufficient information for an accurate correction. The perturbation in pressure distribution can be achieved by extending flaps into the collector flow.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Journal Article

Achieving a Scalable E/E-Architecture Using AUTOSAR and Virtualization

2013-04-08
2013-01-1399
Today's automotive software integration is a static process. Hardware and software form a fixed package and thus hinder the integration of new electric and electronic features once the specification has been completed. Usually software components assigned to an ECU cannot be easily transferred to other devices after they have been deployed. The main reasons are high system configuration and integration complexity, although shifting functions from one to another ECU is a feature which is generally supported by AUTOSAR. The concept of a Virtual Functional Bus allows a strict separation between applications and infrastructure and avoids source code modifications. But still further tooling is needed to reconfigure the AUTOSAR Basic Software (BSW). Other challenges for AUTOSAR are mixed integrity, versioning and multi-core support. The upcoming BMW E/E-domain oriented architecture will require all these features to be scalable across all vehicle model ranges.
Journal Article

Assessing Low Frequency Flow Noise Based on an Experimentally Validated Modal Substructuring Strategy Featuring Non-Conforming Grids

2022-06-15
2022-01-0939
The continuous encouragement of lightweight design in modern vehicles demands a reliable and efficient method to predict and ameliorate the interior acoustic comfort for passengers. Due to considerable psychological effects on stress and concentration, the low frequency contribution plays a vital rule regarding interior noise perception. Apart other contributors, low frequency noise can be induced by transient aerodynamic excitation and the related structural vibrations. Assessing this disturbance requires the reliable simulation of the complex multi-physical mechanisms involved, such as transient aerodynamics, structural dynamics and acoustics. The domain of structural dynamics is particularly sensitive regarding the modelling of attachments restraining the vibrational behaviour of incorporated membrane-like structures. In a later development stage, when prototypes are available, it is therefore desirable to replace or update purely numerical models with experimental data.
Video

BMW Technology/Strategy Regarding EV

2011-11-04
The BMW Group has introduced electric cars to the market with the MINI E already in 2009. The next step will be the launch of the BMW ActiveE in 2011, followed by the revolutionary Mega City Vehicle in 2013. The presentation will explain the BMW Group strategy for implementing sustainable mobility. A focus will be emobility, the use of carbon fiber and the holistic sustainability approach of BMW Group?s project i. Reference will be made to the research results of the MINI E projects in the US and in Europe. Presenter Andreas Klugescheid, BMW AG
Technical Paper

Combustion Chamber Deposits and Their Evaluation by a European Performance Test

2000-06-19
2000-01-2023
Deposits on engine parts, and in particular in combustion chambers of modern engines are causing increasing concern in the automobile industry. Highly sophisticated engine management systems make effects on emissions or performance obvious as outgassing of unburned hydrocarbons or variation of spark advance. Reduced mean heat flux away from the cylinder influences engine thermodynamics. Extreme deposits may cause noise increase by carbon rap. A special form of combustion chamber deposits, well known under the synonym spark plug fouling, is a carbon needle on spark plugs, which can cause the total damage of the catalysts (Japanese Industrial Standard D 1606: Adaptability Test Code of Spark Plug for Automobiles) The Co-ordinating European Council for the development of performance tests for transportation fuels, lubricants, and other fluids (CEC) started the development of a new performance test in 1994.
Technical Paper

Communication and Information Systems - A Comparison of Ideas, Concepts and Products

2000-03-06
2000-01-0810
How can car manufacturers, which are primary mechanical engineers, become software specialists? This is a question of prime importance for car electronics in the future. Modern vehicles offer a large number of electronic and software based functions to achieve a high level of safety, fuel economy, comfort, entertainment and security which are developed under pressure of regulations, of consumers needs and of competitive time to market aspects. This contribution draws a picture, what could be important in future for in car communication and information system in terms of development process, HW & SW architectures, partnerships in automotive industry and security of industrial properties. For this purpose the automotive development is reviewed and actual examples of system designs are given.
Technical Paper

Comparison of Frontal Crashes in Terms of Average Acceleration

2000-03-06
2000-01-0880
The paper presents a comparison between the acceleration pulses of vehicle-to-vehicle crash tests with those of different single-vehicle crash tests. The severity of the full frontal rigid barrier test is compared with that of the vehicle- to-vehicle crash test based on average acceleration and time-to-zero-velocity. Based on this a 30mph full frontal rigid barrier test is found equivalent to a 41mph vehicle-to-vehicle crash. A reduced speed of 22mph for full frontal rigid barrier test is found to represent vehicle-to- vehicle crashes with 50%-100% overlap, with each vehicle travelling at 30mph. The paper also presents a comparison of the acceleration pulses from different crash tests based on the pulse shape and the pulse phase cross-correlation. None of the single-vehicle crash tests have been found to resemble vehicle-to-vehicle crashes in terms of the pulse shape and the pulse phase.
Technical Paper

Comparison of Indoor Vehicle Thermal Soak Tests to Outdoor Tests

2004-03-08
2004-01-1376
Researchers at the National Renewable Energy Laboratory conducted outdoor vehicle thermal soak tests in Golden, Colorado, in September 2002. The same environmental conditions and vehicle were then tested indoors in two DaimlerChrysler test cells, one with metal halide lamps and one with infrared lamps. Results show that the vehicle's shaded interior temperatures correlated well with the outdoor data, while temperatures in the direct sun did not. The large lamp array situated over the vehicle caused the roof to be significantly hotter indoors. Yet, inside the vehicle, the instrument panel was cooler due to the geometry of the lamp array and the spectral difference between the lamps and sun. Results indicate that solar lamps effectively heat the cabin interior in indoor vehicle soak tests for climate control evaluation and SCO3 emissions tests. However, such lamps do not effectively assess vehicle skin temperatures and glazing temperatures.
Technical Paper

Comprehensive Approach for the Chassis Control Development

2006-04-03
2006-01-1280
Handling characteristics, ride comfort and active safety are customer relevant attributes of modern premium vehicles. Electronic control units offer new possibilities to optimize vehicle performance with respect to these goals. The integration of multiple control systems, each with its own focus, leads to a high complexity. BMW and ITK Engineering have created a tool to tackle this challenge. A simulation environment to cover all development stages has been developed. Various levels of complexity are addressed by a scalable simulation model and functionality, which grows step-by-step with increasing requirements. The simulation environment ensures the coherence of the vehicle data and simulation method for development of the electronic systems. The article describes both the process of the electronic control unit (ECU) development and positive impact of an integrated tool on the entire vehicle development process.
Technical Paper

Considerations Implementing a Dual Voltage Power Network

1998-10-19
98C008
Innovative electric systems demand a new approach for the distribution of electric energy in passenger cars. This paper describes a very promising solution-the dual voltage power network with an upper voltage level of 42V, and the considerations which led to the selection of this voltage level. Owing to the significant impact on the industry, a common standard is required. Depending on their profile, OEMs will select their own strategies for implementation, either as a base for innovation or to enhance overall system efficiency. This will lead to different approaches and timeframes.
Technical Paper

DOE Analysis of Factors Affecting Ultimate Strength of Multiple Resistance Spot Welded Joints

2007-04-16
2007-01-1661
More than 200 tensile-shear resistance spot welded specimens were produced and tested to analyze the effect of spot weld spacing, weld size, sheet thickness, and adhesive on the ultimate strength of joints made from a mild hot dip galvannealed steel and an unexposed quality hot dip galvannealed 590 MPa minimum tensile strength dual phase steel (DP590). The geometric layout parameters were analyzed by a design of experiment (DOE) approach. The analysis showed that weld size is a primary factor affecting the strength of the joints for a given material. It was also determined that structural adhesive created a large relative strengthening for joints made from the mild steel. Interactions of the geometrical factors are also presented.
Technical Paper

Damped Accelerometers and Their Use in Vehicle Crash Testing

2005-04-11
2005-01-0746
At one time it was considered imperative to collect high frequency accelerometer data for accurate analysis. As a result current FMVSS regulations and SAE J2570 require the use of accelerometers with damping ratio of 0.05 or less (designated as undamped). This prevents the use of damped accelerometers for regulated channels. Damped accelerometers can provide comparable data and in some cases better data than undamped accelerometers, as long as they meet specific minimum requirements. To collect the most useful data, damped accelerometers should be added to the tool box of transducers used by crash test facilities.
Technical Paper

Data Reduction in Automotive Multiplex Systems

1994-03-01
940135
Increasing demand for utilities like navigation systems or user-defined electronic phonebooks on one hand and sophisticated engine and gear controls on the other hand leads to growing bus load between distributed local control units. This paper shows the benefits and the characteristics of various state of the art data-compression algorithms and their impact on typical automotive multiplex dataclasses. The evaluation and optimization of promising algorithms can be done via a proposed “communications prototyping”-approach. The hardware/software components of such a rapid prototyping package are outlined. Finally, first performance results of suitable data-compression measures are presented.
Technical Paper

Development of Advanced Metallic Substrate Design for Close Coupled Converter Application

2007-04-16
2007-01-1262
The implementations of the Tier 2 and LEVII emission levels require fast catalyst light-off and fast closed loop control through high-speed engine management. The paper describes the development of innovative catalyst designs. During the development thermal and mechanical boundary conditions were collected and component tests conducted on test rigs to identify the emission and durability performance. The products were evaluated on a Super Imposed Test Setup (SIT) where thermal and mechanical loads are applied to the test piece simultanously and results are compared to accelerated vehicle power train endurance runs. The newly developed light-off catalyst with Perforated Foil Technology (PE) showed superior emission light-off characteristic and robustness.
Technical Paper

Development of an Air Intake System Using Vibro-Acoustics Numerical Modeling

2001-04-30
2001-01-1519
This paper describes the use of Vibro-Acoustics numerical modeling for prediction of an Air Intake System noise level for a commercial vehicle. The use of numerical methods to predict vehicle interior noise levels as well as sound radiated from components is gaining acceptance in the automotive industry [1]. The products of most industries can benefit from improved acoustic design. On the other hand, sound emission regulation has become more and more rigorous and customers expect quieter products. The aim of this work it is to assess the Vibro-Acoustics behavior of Air Intake System and influence of it in the sound pressure level of the vehicle.
X