Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A 2D Vehicle-to-Vehicle Crash Model for Fleet Analysis (Part-I)

2005-04-11
2005-01-1938
This paper presents a 2D model for frontal vehicle-to-vehicle crashes that can be used for fleet modeling. It presents the derivational details and a preliminary assessment of the model. The model is based on rigid-body collision principles, enhanced adequately to represent energy dissipation and lateral engagement that plays a significant role in oblique frontal vehicle-to-vehicle crashes. The model employs the restitution and the apparent friction in order to represent dissipation and engagement respectively. It employs the impulse ellipse to identify the physical character of the crash, based on the principal directions of impulse. The enhancement of the rigid body collision model with restitution and apparent friction is based on collision simulations that use very simple finite element vehicle representations. The dependence of the restitution and the apparent friction on the incidence angle, the frontal offset, and the mass ratio, as predicted by the 2D model, has been presented.
Journal Article

A CFD Analysis Method for Prediction of Vehicle Exterior Wind Noise

2017-03-28
2017-01-1539
High frequency wind noise caused by turbulent flow around the front pillars of a vehicle is an important factor for customer perception of ride comfort. In order to reduce undesirable interior wind noise during vehicle development process, a calculation and visualization method for exterior wind noise with an acceptable computational cost and adequate accuracy is required. In this paper an index for prediction of the strength of exterior wind noise, referred to as Exterior Noise Power (ENP), is developed based on an assumption that the acoustic power of exterior wind noise can be approximated by the far field acoustic power radiated from vehicle surface. Using the well-known Curle’s equation, ENP can be represented as a surface integral of an acoustic intensity distribution, referred to as Exterior Noise Power Distribution (ENPD). ENPD is estimated from turbulent surface pressure fluctuation and mean convective velocity in the vicinity of the vehicle surface.
Journal Article

A Cloud-Based Simulation and Testing Framework for Large-Scale EV Charging Energy Management and Charging Control

2022-03-29
2022-01-0169
The emerging need of building an efficient Electric Vehicle (EV) charging infrastructure requires the investigation of all aspects of Vehicle-Grid Integration (VGI), including the impact of EV charging on the grid, optimal EV charging control at scale, and communication interoperability. This paper presents a cloud-based simulation and testing platform for the development and Hardware-in-the-Loop (HIL) testing of VGI technologies. Although the HIL testing of a single charging station has been widely performed, the HIL testing of spatially distributed EV charging stations and communication interoperability is limited. To fill this gap, the presented platform is developed that consists of multiple subsystems: a real-time power system simulator (OPAL-RT), ISO 15118 EV Charge Scheduler System (EVCSS), and a Smart Energy Plaza (SEP) with various types of charging stations, solar panels, and energy storage systems.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Comparison of Conversion Efficiency and Flow Restriction Performance of Ceramic and Metallic Catalyst Substrates

2001-03-05
2001-01-0926
Catalyst systems utilizing ceramic and metallic substrates were compared to assess the influence of various substrate parameters on the exhaust gas conversion efficiency and flow restriction. In particular, the substrate surface area, substrate specific heat capacity, and substrate volume were all evaluated for their importance in estimating the conversion efficiency of the catalyst system. Additionally, substrate open frontal area and cell hydraulic diameter were compared against exhaust restriction performance.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

A Filament Winding Concept to Improve the Strength and Stiffness Characteristics of Thermoplastic Large Injection Molded Composite Automotive Body Panels

1999-09-28
1999-01-3202
The automobile industry is seeing an increased need for the application of plastics and their derivatives in various forms such as fiber reinforced plastics, in the design and manufacture of various automotive structural components, to reduce weight, cost and improve fuel efficiency. A lot of effort is being directed at the development of structural plastics, to meet specific automotive requirements such as stiffness, safety, strength, durability and environmental standards and recyclability. This paper presents the concept of reinforcing large injection molded fiber reinforced body panels with structural uni-directional fibers (carbon, graphite, kevlar or fiber glass) wound in tension around the body panels by filament winding technique. Structural uni-directional fibers in tension wound around the fiber reinforced plastic inner body panels would place these body panels under compression.
Technical Paper

A Finite Element Model of the TRL Honeycomb Barrier for Compatibility Studies

2005-04-11
2005-01-1352
A finite element model of the Transport Research Laboratory (TRL) honeycomb barrier, which is being proposed for use in vehicle compatibility studies, has been developed for use in LSDYNA. The model employs penalty parameters to enforce continuity between adjacent finite elements of the honeycomb barrier. Results of impact tests with indentors of various shapes and sizes were used to verify the performance of the computational model. Numerical simulations show reasonably good agreement with the test results.
Journal Article

A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing

2018-04-03
2018-01-0190
A Machine Learning-Genetic Algorithm (ML-GA) approach was developed to virtually discover optimum designs using training data generated from multi-dimensional simulations. Machine learning (ML) presents a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. In the present work, a total of over 2000 sector-mesh computational fluid dynamics (CFD) simulations of a heavy-duty engine were performed. These were run concurrently on a supercomputer to reduce overall turnaround time. The engine being optimized was run on a low-octane (RON70) gasoline fuel under partially premixed compression ignition (PPCI) mode. A total of nine input parameters were varied, and the CFD simulation cases were generated by randomly sampling points from this nine-dimensional input space. These input parameters included fuel injection strategy, injector design, and various in-cylinder flow and thermodynamic conditions at intake valve closure (IVC).
Technical Paper

A Modeling Framework for Connectivity and Automation Co-simulation

2018-04-03
2018-01-0607
This paper presents a unified modeling environment to simulate vehicle driving and powertrain operations within the context of the surrounding environment, including interactions between vehicles and between vehicles and the road. The goal of this framework is to facilitate the analysis of the energy impacts of vehicle connectivity and automation, as well as the development of eco-driving algorithms. Connectivity and automation indeed provide the potential to use information about the environment and future driving to minimize energy consumption. To achieve this goal, the designers of eco-driving control strategies need to simulate a wide range of driving situations, including the interactions with other vehicles and the infrastructure in a closed-loop fashion.
Technical Paper

A New Material Recycling Technology for Automobile Rubber Waste

2003-10-27
2003-01-2775
A new material recycling technology for crosslinked rubber was developed using the continuous reactive processing method. In this process of producing reclaimed rubber, breakage of crosslinking points in the crosslinked rubber occurs selectively under the controls of shear stress, reaction temperature, and internal pressure in a modular screw type reactor. Deodorization during the process has also become possible by a newly developed method. The reclaimed rubber obtained from rubber waste generated from both automobile manufacturing products and post-consumer products shows excellent mechanical properties applicable to new rubber compounds. Furthermore, an enhanced rubber recycling process for producing thermoplastic elastomer (TPE) based on rubber waste has been established. The obtained TPE exhibits highly recoverable rubber elasticity and mechanical properties comparable to commercial TPE.
Technical Paper

A New Method of Engine Sound Design for Car Interior Noise Using a Psychoacoustic Index

2004-03-08
2004-01-0406
In this study, a new practical design method (tool) for engine sound quality in a car interior is proposed. The tool can automatically create the target interior sound using the psychoacoustic index ‘powerfulness’ based on subjective tests. Moreover, it can calculate the intake noise characteristic to create the target interior sound and select the suitable intake specification from the prepared database. By using this method sound engineering can be easily and effectively carried out without manufacturing an experimental car.
Technical Paper

A New V-8 Engine for the LEXUS LS 400

1989-09-01
892003
A new 4.0 liter V8 engine, 1UZ-FE, has been developed for the luxury sedan, LEXUS LS400. The engine has 4 camshafts and 32 valves, and weighs only 195 kg (430 lbs) having many light alloy components and carefully designed configurations. The appropriate engine displacement and high technology adopted throughout from design to manufacturing process enable the LS400 to run powerfully with excellent fuel economy and a pleasant sounds. It develops 250HP at 5600 rpm and 260ft-lbs of torque at 4400 rpm, and its fuel economy figure, well exceeds the EPA's tax charge level of 22.5mpg. These figures have been achieved through the newest technologies applied to every part of the design, such as: Well studied intake and exhaust systems, centrally located spark plug in the TOYOTA original four-valve combustion chamber, which has a narrow valve including angle, and low friction components like aluminum alloy valve lifters and well balanced moving parts.
Technical Paper

A Numerical Investigation on Scalability and Grid Convergence of Internal Combustion Engine Simulations

2013-04-08
2013-01-1095
Traditional Lagrangian spray modeling approaches for internal combustion engines are highly grid-dependent due to insufficient resolution in the near nozzle region. This is primarily because of inherent restrictions of volume fraction with the Lagrangian assumption together with high computational costs associated with small grid sizes. A state-of-the-art grid-convergent spray modeling approach was recently developed and implemented by Senecal et al., (ASME-ICEF2012-92043) in the CONVERGE software. The key features of the methodology include Adaptive Mesh Refinement (AMR), advanced liquid-gas momentum coupling, and improved distribution of the liquid phase, which enables use of cell sizes smaller than the nozzle diameter. This modeling approach was rigorously validated against non-evaporating, evaporating, and reacting data from the literature.
Technical Paper

A PG-Based Powertrain Model to Generate Component Loads for Fatigue Reliability Testing

2003-03-03
2003-01-1223
Once a vehicle powertrain is designed and the first prototype is built, extensive on-board instrumentation and testing needs to be carried out at the proving grounds (PG) to generate load histograms for various components. The load histograms can then be used to carry out durability tests in the laboratory. When a component in the vehicle powertrain is changed, the load histograms need to be generated again at the proving grounds. This adds much time and money to the vehicle's development. The objective is to develop a virtual powertrain model that can be simulated through a powertrain endurance driving cycle in order to predict torque histograms and total damage. The predictions are then correlated against measured data acquired on a test vehicle that was driven through the same driving cycle at the proving grounds.
Technical Paper

A Process to Recover Carbon Fibers From Polymer Matrix Composites

2002-06-03
2002-01-1967
A process to recover carbon fibers from obsolete polymer matrix composite (PMC) materials has been developed. Carbon fibers have been recovered from samples containing urethane-based or epoxy-based substrates. An experimental parametric study conducted on both the bench-scale and the pilot-scale has been done to determine the least-cost process conditions. Based on this study, we have evaluated process economics that suggested a payback of about one year. This process is also applicable to polymer matrix composite materials made with thermoplastic substrates. This paper presents the results of the experimental testing campaign and the results of the process economic analysis.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Real-Time Intelligent Speed Optimization Planner Using Reinforcement Learning

2021-04-06
2021-01-0434
As connectivity and sensing technologies become more mature, automated vehicles can predict future driving situations and utilize this information to drive more energy-efficiently than human-driven vehicles. However, future information beyond the limited connectivity and sensing range is difficult to predict and utilize, limiting the energy-saving potential of energy-efficient driving. Thus, we combine a conventional speed optimization planner, developed in our previous work, and reinforcement learning to propose a real-time intelligent speed optimization planner for connected and automated vehicles. We briefly summarize the conventional speed optimization planner with limited information, based on closed-form energy-optimal solutions, and present its multiple parameters that determine reference speed trajectories.
Technical Paper

A Robustness-Focused Shape Optimization Method for Intake Ports

2009-06-15
2009-01-1777
Merging a CAE shape optimization system and a concept Taguchi method SN-ratio index, a robustness-focused automated shape optimization method has been developed. Applying this method to diesel intake ports, with mold position tolerance set as the error factor, SN-ratio was defined for swirl stability. As a result of the optimization provided by a multi-objective genetic algorithm, simultaneous improvement of flux, swirl rotation and SN ratio was achieved.
X