Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Active Body Control (ABC) The DaimlerChrysler Active Suspension and Damping System

2002-10-21
2002-21-0054
Suspension systems have a major effect on the handling characteristics of a vehicle, particularly ride comfort and handling safety, and thus substantially determine its character. Their increasing significance is reflected by the greater value that ever more demanding customers attribute to the properties ride comfort and handling safety. Now that the potential of conventional, passive systems is largely exhausted, adaptive and active systems open up new possibilities, e.g.: the suppression of rolling and pitching movements, handling and ride height independent of load, handling characteristics and ride height adaptable to situation and customer requirement. The DaimlerChrysler active suspension and damping system (Active Body Control – ABC) manages to resolve the conflict of aims between handling safety and ride comfort which afflicts conventional fixed suspension systems, and as a result offers greater freedom of layout whilst enabling optimization of both target criteria.
Technical Paper

Correction of Nozzle Gradient Effects in Open Jet Wind Tunnels

2004-03-08
2004-01-0669
In open jet wind tunnels with high blockage ratios a sharp rise in drag is observed for models approaching the nozzle exit plane. The physical background for this rise in drag will be analyzed in the paper. Starting with a basic analysis of the dependencies of the effect on model and wind tunnel properties, the key parameters of the problem will be identified. It will be shown using a momentum balance and potential flow theory that interaction between model and nozzle exit can result in significant tunnel-induced gradients at the model position. In a second step, a CFD-based investigation is used to show the interaction between nozzle exit and a bluff body. The results cover the whole range between open jet and closed wall test section interaction. The model starts at a large distance from the nozzle, then moves towards the nozzle, enters the nozzle and is finally completely inside the nozzle.
Technical Paper

Development and Evaluation of a Numerical Simulation Strategy Designed to Support the Early Stages of the Aerodynamic Development Process

2002-03-04
2002-01-0571
In order to fulfill the need for an efficient and reliable computational method for the aerodynamic optimization of passenger cars, a numerical simulation strategy has been developed at DaimlerChrysler in Stuttgart. The simulation strategy consists of surface preparation, three dimensional mesh generation, flow simulation using CFD, and post-processing. The method will be applied mainly in the early concept phase of the development process when 1:4 scale models with smooth underbodies are used. In this study SAE-bodies as well as modifications of real car shapes are presented. The paper also discusses which improvements are needed to establish a mainly CFD-based process in the early concept phase.
Technical Paper

Evaluation of Thermal Comfort in Convertibles

2002-03-04
2002-01-0224
In the present study, the thermal comfort in a convertible has been evaluated using the in-house program TEKOS. The investigations have been performed for a SLK-class Mercedes with two occupants. The computational mesh consists of about 3 million hexahedra cells. TEKOS has been adapted to open driving conditions. The influence of the air-conditioning system and of different draft stops on the thermal comfort has been investigated in an autumn case. The study has shown, that in a basic case without draft stop and air conditioning the evaluation results in very poor thermal comfort values at the whole body, especially at unclothed parts of the body. If a draft stop and maximum heating is regarded, almost all parts of the body are close to the comfort range except of the head region. With TEKOS it is possible to quantify the influence of different parameters on the thermal sensation in convertibles with the advantage of an objective thermal evaluation.
Technical Paper

Flow around an Isolated Wheel - Experimental and Numerical Comparison of Two CFD Codes

2004-03-08
2004-01-0445
This paper presents velocity and pressure measurements obtained around an isolated wheel in a rotating and stationary configuration. The flow field was investigated using LDA and a total pressure probe in the model scale wind tunnel at IVK/FKFS. Drag and lift were determined for both configurations as well as for the wheel support only. These results were used as a reference for comparing numerical results obtained from two different CFD codes used in the automotive industry, namely STAR-CD™ and PowerFLOW™. The comparison gives a good overall agreement between the experimental and the simulated data. Both CFD codes show good correlation of the integral forces. The influence of the wheel rotation on drag and lift coefficients is predicted well. All mean flow structures which can be found in the planes measured with LDA can be recognized in the numerical results of both codes. Only small local differences remain, which can be attributed to the different CFD codes.
Technical Paper

Functional Integration of E/E Systems

2000-11-01
2000-01-C052
The complexity of electrical/electronic vehicle systems mandates a systematic approach to the development of vehicle control, infotainment or comfort functions as well as the integration of these functions in an in-vehicle network consisting of several dedicated bus systems and according gateways. Due to reduced time-to-market, the integration has to be performed in a virtual environment. The classical Digital Mockup (DMU) addresses the physical integration of EE systems as mechanical components. However, functional aspects play a dominant role in EE vehicle systems. For this reason, functional integration defines a multi-view, mixed-level approach to the description, transformation, verification and integration of vehicle functions under consideration of the physical vehicle integration.
Technical Paper

Numerical Study of the Influence of Air Vent Area and Air Mass Flux on the Thermal Comfort of Car Occupants

2000-03-06
2000-01-0980
In the present paper, first results of an extensive and ongoing parametric study are shown. The objective of the parametric study is to clarify the influence of relevant flow and geometrical parameters on the microclimate and thermal comfort of the occupants. Flow parameters included in the study are air mass fluxes, velocity magnitude, air temperature and inflow direction at the vents. Geometrical parameters of interest are number, location, area and shape of the air vents as well as geometrical details of the passenger compartment itself. The parametric study is performed numerically on the basis of a computational model for a passenger compartment of a Mercedes E-Class sedan. The numerical method used has been published earlier and consists of a system of three programs for simulating the flow and temperature field in the cabin, the heat transfer and radiation and the thermal sensation of the occupants.
Technical Paper

The Influence of Rotating Wheels on Vehicle Aerodynamics - Numerical and Experimental Investigations

2007-04-16
2007-01-0107
Investigations of the aerodynamic influence of rotating wheels on a simplified vehicle model as well as on a series production car are presented. For this research CFD simulations are used together with wind tunnel measurements like LDV and aerodynamic forces. Several wheel rim geometries are examined in stationary and in rotating condition. A good agreement could be achieved between CFD simulations and wind tunnel measurements. Based on the CFD analysis the major aerodynamic mechanisms at rotating wheels are characterized. The flow topology around the wheels in a wheel arch is revealed. It is shown, that the reduction of drag and lift caused by the wheel rotation on the isolated wheel and the wheel in the wheel arch are based on different effects of the airflow. Though the forces decrease at the front wheel due to the wheel rotation locally, the major change in drag and lift happens directly on the automotive body itself.
Technical Paper

The Powertrain of the All-New Maybach - Comfort and Driving Performance on the Highest Level

2003-03-03
2003-01-0597
One of the world's most noble and high quality automobile brands is being revived: Maybach Aestetics, poise, perfection and technical brilliance founded the reputation of the magnificient Maybach sedans and convertibles, whose “Zeppelin” flagship, with a length of around 5.50 metres, was once the most prestigious German passenger car on the road - “an automobile which fulfills every last desire with refined elegance and power”, as the luxury automobile brand's brochure stated in 1934. DaimlerChrysler now feels obliged to live up to these high standards. As cornerstones of this vehicle concept, focus was placed on the topics of design, comfort, spatial availability, safety, exclusiveness and extra-ordinary performance. A major role was given to the powertrain in order to meet outstanding driving comfort and agility.
X