Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D-CFD Simulation of DI-Diesel Combustion Applying a Progress Variable Approach Accounting for Detailed Chemistry

2007-10-29
2007-01-4137
A chemical sub-model for realistic CFD simulations of Diesel engines is developed and demonstrated by application to some test cases. The model uses a newly developed progress variable approach to incorporate a realistic treatment of chemical reactions into the description of the reactive flow. The progress variable model is based on defining variables that represent the onset and temporal development of chemical reactions before and during self ignition, as well as the stage of the actual combustion. Fundamental aspects of the model, especially its physical motivation and finding a proper progress variable, are discussed, as well as issues of practical implementation. Sample calculations of Diesel-typical combustion scenarios are presented which are based on the progress-variable model, showing the capability of the model to realistically describe the ignition-and combustion phase.
Technical Paper

3D-Simulation of DI-Diesel Combustion Applying a Progress Variable Approach Accounting for Complex Chemistry

2004-03-08
2004-01-0106
A progress variable approach for the 3D-CFD simulation of DI-Diesel combustion is introduced. Considering the Diesel-typical combustion phases of auto-ignition, premixed and diffusion combustion, for each phase, a limited number of characteristic progress variables is defined. By spatial-temporal balancing of these progress variables, the combustion process is described. Embarking on this concept, it is possible to simulate the reaction processes with detailed chemistry schemes. The combustion model is coupled with a mesh-independent Eulerian-spray model in combination with orifice resolving meshes. The comparison between experiment and simulation for various Diesel engines shows good agreement for pressure traces, heat releases and flame structures.
Technical Paper

A Holistic Hydraulic and Spray Model – Liquid and Vapor Phase Penetration of Fuel Sprays in DI Diesel Engines

1999-10-25
1999-01-3549
For studying the effects of injection system properties and combustion chamber conditions on the penetration lengths of both the liquid and the vapor phase of fuel injectors in Diesel engines, a holistic injection model was developed, combining hydraulic and spray modeling into one integrated simulation tool. The hydraulic system is modeled by using ISIS (Interactive Simulation of Interdisciplinary Systems), a one dimensional in–house code simulating the fuel flow through hydraulic systems. The computed outflow conditions at the nozzle exit, e.g. the dynamic flow rate and the corresponding fuel pressure, are used to link the hydraulic model to a quasi–dimensional spray model. The quasi–dimensional spray model uses semi–empirical 1D correlation functions to calculate spray angle, droplet history and droplet motion as well as penetration lengths of the liquid and the vapor phases. For incorporating droplet vaporization, a single droplet approach has been used.
Technical Paper

A Method to Reduce the Calculation Time for an Internal Combustion Engine Model

2001-03-05
2001-01-0574
Coming along with the present movement towards the ultimately variable engine, the need for clear and simple models for complex engine systems is rapidly increasing. In this context Common-Rail-Systems cause a special kind of problem due to of the high amount of parameters which cannot be taken into consideration with simple map-based models. For this reason models with a higher amount of complexity are necessary to realize a representative behavior of the simulation. The high computational time of the simulation, which is caused by the increased complexity, makes it nearly impossible to implement this type of model in software in closed loop applications or simulations for control purposes. In this paper a method for decreasing the complexity and accelerating the computing time of automotive engine models is being evaluated which uses an optimized method for each stage of the diesel engine process.
Technical Paper

A New Calibration System for the Daimler Chrysler Medium and Heavy Duty Diesel Engines - An Exercise in Methods & Tools

2001-03-05
2001-01-1222
High demands in fuel consumption, efficiency, and low emissions lead to complex control functions for current and future diesel engine management systems. Great effort is necessary for their optimal calibration. At the same time, and particularly for cost reasons, many variants exist on one individual type of diesel engine management system. Not only is it used for several base engines, but these engines are also used in different environments and for different tasks. For optimal deployment, their calibration status must also be optimized individually. Furthermore, the demand for shorter development cycles and enhanced quality lead to a catalogue of new requirements for the calibration process and the affiliated tool. A new calibration system was developed, which optimally reflects the new demands.
Technical Paper

Active Safety of Commercial Vehicles - The European Status

2000-12-01
2000-01-3154
The increase of active safety will demand more and more electronic intelligence, if a drastic optimization of conventional systems is not possible any more. Starting from today's mechatronic systems, the trend leads via tomorrow's smart electronic systems to the future electronic networking of all intelligent vehicle systems. The paper describes the present status of these systems in Europe and the possibilities of increasing the active safety by using electronic intelligence.
Technical Paper

Aftertreatment Catalyst Design for the New DaimlerChrysler Supercharged 4-Cylinder Engine with Direct Gasoline Injection

2003-03-03
2003-01-1161
The launching of direct injection gasoline engines is currently one of the major challenges for the automotive industry in the European Union. Besides its potential for a notable reduction of fuel consumption, the engine with direct gasoline injection also offers increased power during stoichiometric and stratified operation. These advantages will most probably lead to a significant market potential of the direct injection concept in the near future. In order to meet the increasingly more stringent European emission levels (EURO IV), new strategies for the exhaust gas aftertreatment are required. The most promising technique developed in recent years, especially for NOx conversion in lean exhaust gases, is the so-called NOx storage catalyst.
Technical Paper

Automotive Gateway Design Using Evolutionary Algorithms

2005-04-11
2005-01-1696
Because of the rapidly increasing amount of electronic components and busses in a vehicle, the use of gateways in Electronic Control Units (ECUs) becomes more important. The upcoming question is how to design an optimal gateway. This paper describes a method for designing an optimal automotive gateway in an FPGA by using Evolutionary Algorithms (EAs). The complete gateway functionality is diagrammed in a specification graph which consists of a function graph and an architecture graph. The function graph describes the complete functionality of the gateway. The architecture graph shows the variety of the different implementation options of the mapped function graph. Each gateway task in the function graph can be realized either in a parallel way (different kinds of hardware implementations) or in a sequential way (software on a microprocessor core).
Technical Paper

Bionic Optimization of Air-Guiding Systems

2004-03-08
2004-01-1377
Topology optimization in structural analysis is known for many years. In the presented procedure, “topology optimization” is used for computational fluid dynamics (CFD) for the first time. It offers the possibility of a very fast optimization process under utilization of the physical information in the flow field instead of using optimization algorithms like for example evolution strategies or gradient based methods. This enables the design engineer to generate in a first layout air guiding systems with low pressure drop in a fast and easy manner, which can than be improved further due to constraints of styling or production requirements. This procedure has been tested with many examples and shows promising results with a reduction in pressure loss up to 60% compared to a duct designed in CAD in the traditional way.
Technical Paper

Catalyst Design for High Performance Engines Capable to Fulfill Future Legislation

2004-03-08
2004-01-1276
To meet future emission levels the industry is trying to reduce tailpipe emissions by both, engine measures and the development of novel aftertreatment concepts. The present study focuses on a joint development of aftertreatment concepts for gasoline engines that are optimized in terms of the exhaust system design, the catalyst technology and the system costs. The best performing system contains a close-coupled catalyst double brick arrangement using a new high thermal stable catalyst technology with low precious metal loading. This system also shows an increased tolerance against catalyst poisoning by engine oil.
Technical Paper

Catalyst Temperature Rise during Deceleration with Fuel Cut

2006-04-03
2006-01-0411
Automotive catalysts close coupled to gasoline engines operated under high load are frequently subjected to bed temperatures well above 950 °C. Upon deceleration engine fuel cut is usually applied for the sake of fuel economy, robustness and driveability. Even though catalyst inlet gas temperatures drop down immediately after fuel cut - catalyst bed temperatures may rise significantly. Sources for catalyst temperature rise upon deceleration with fuel cut are discussed in this contribution.
Technical Paper

Correction of Nozzle Gradient Effects in Open Jet Wind Tunnels

2004-03-08
2004-01-0669
In open jet wind tunnels with high blockage ratios a sharp rise in drag is observed for models approaching the nozzle exit plane. The physical background for this rise in drag will be analyzed in the paper. Starting with a basic analysis of the dependencies of the effect on model and wind tunnel properties, the key parameters of the problem will be identified. It will be shown using a momentum balance and potential flow theory that interaction between model and nozzle exit can result in significant tunnel-induced gradients at the model position. In a second step, a CFD-based investigation is used to show the interaction between nozzle exit and a bluff body. The results cover the whole range between open jet and closed wall test section interaction. The model starts at a large distance from the nozzle, then moves towards the nozzle, enters the nozzle and is finally completely inside the nozzle.
Technical Paper

Current Status and Prospects for Gasoline Engine Emission Control Technology - Paving the Way for Minimal Emissions

2000-03-06
2000-01-0856
The background for the development activities of the motor vehicle industry is strongly influenced by lawmakers, with engine development, in particular, coming under increasing pressure from the requirements of emissions legislation. Demands for CO2 reduction and thus corresponding savings in consumption contrast with regulations which call for compliance with extremely low emission levels, featuring the extreme of zero tailpipe emissions, and alternative low emission levels which make accurate measurement a problem even with current analysis technology. An example of such requirements are the SULEV limits of California law. These standards have given rise to a wide variety of emission control concepts, each of which, however, has certain limitations in its application. In the context of this general setting, the paper shows that the phase directly subsequent to cold start should be focused upon if these ambitious targets are to be reached.
Technical Paper

DaimlerChrysler's New 1.6L, Multi-Valve 4-Cylinder Engine Series

2001-03-05
2001-01-0330
This paper introduces the new 1.6L engine family, designed and developed by the Chrysler group of DaimlerChrysler Corporation in cooperation with BMW. An overview of the engine's design features is provided, with a detailed review of the performance development process with emphasis on airflow, combustion, thermal management and friction. This information is presented, to provide an understanding of how the engine simultaneously achieves outstanding levels of torque, power, fuel consumption, emissions and idle stability. The use of analytical tools such as Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) in the optimization of the engine is shown.
Technical Paper

Development and Evaluation of a Numerical Simulation Strategy Designed to Support the Early Stages of the Aerodynamic Development Process

2002-03-04
2002-01-0571
In order to fulfill the need for an efficient and reliable computational method for the aerodynamic optimization of passenger cars, a numerical simulation strategy has been developed at DaimlerChrysler in Stuttgart. The simulation strategy consists of surface preparation, three dimensional mesh generation, flow simulation using CFD, and post-processing. The method will be applied mainly in the early concept phase of the development process when 1:4 scale models with smooth underbodies are used. In this study SAE-bodies as well as modifications of real car shapes are presented. The paper also discusses which improvements are needed to establish a mainly CFD-based process in the early concept phase.
Technical Paper

Emissions Performance of GTL Diesel Fuel and Blends with Optimized Engine Calibrations

2005-05-11
2005-01-2187
The results of a comprehensive experimental investigation into the exhaust emission performance and combustion properties of neat and blended Gas-To-Liquids (GTL) diesel fuel are presented. A sulphur-free European diesel fuel was used as the reference fuel, and two blends of the GTL diesel fuel with the reference fuel, containing 20% and 50% GTL diesel fuel respectively, were investigated. The study was based on a Mercedes Benz 2.2 liter passenger car diesel engine and presents emission data for both the standard engine calibration settings, as well as settings which were optimized to match the characteristics of each fuel. Vehicle emission tests showed that the GTL diesel fuel results in reductions in HC and CO emissions of greater than 90%, while PM is reduced by 30%, and NOx remains approximately unchanged. Engine bench dynamometer tests showed reductions in soot of between 30% and 60%, and NOx reductions of up to 10% with the GTL diesel fuel, depending on the operating point.
Technical Paper

Evaluation on Analytical Tire Models for Vehicle Vertical Vibration Simulation Using Virtual Tire Testing Method

1999-03-01
1999-01-0786
This paper evaluates several durability tire models using Virtual Tire Testing (VTT) strategy. VTT conducts tire testing (simulation) using LS–DYNA based on a Virtual Tire which is built by 3–D finite element mesh. VTT is repeatable and could do special tire tests which can't be done using normal tire testing bench. A brief review is given on durability tire models and several typical tire models are selected for this study. All the necessary parameters for establishing the analytical tire models are extracted from the Virtual Tire. Quarter vehicle model is used to simulate the vehicle vertical vibration. The comments of those analytical tire models are given based on their performance vs. VTT.
Technical Paper

Evolution-Strategy Based, Fully Automatic, Numerical Optimization of Gas-Exchange Systems for IC Engines

2001-03-05
2001-01-0577
Today, a number of simulation codes are available for pre-designing gas exchange systems of IC engines with good accuracy (e.g. PROMO, WAVE, GT-Power). However, optimizing such systems still requires numerous time consuming and inefficient trial and error runs. Also, accounting for constraints as size, volume, peak combustion pressure etc. multiplies the necessary efforts additionally. Hence there is a strong need for efficient procedures for finding optimum designs automatically and reliably. To automatically find the global optimum design parameters under a given set of real constraints of a practical case, a multi-membered evolution-strategy based optimization code was developed. The code which efficiently finds the true optimum dimensions of gas exchange systems (duct lengths, duct diameters, volumes) of an IC engine. The code can be readily generalized, and adapted to arbitrary optimization problems.
Technical Paper

Evolutionary Safety Testing of Embedded Control Software by Automatically Generating Compact Test Data Sequences

2005-04-11
2005-01-0750
Whereas the verification of non-safety-related, embedded software typically focuses on demonstrating that the implementation fulfills its functional requirements, this is not sufficient for safety-relevant systems. In this case, the control software must also meet application-specific safety requirements. Safety requirements typically arise from the application of hazard and/or safety analysis techniques, e.g. FMEA, FTA or SHARD. During the downstream development process it must be shown that these requirements cannot be violated. This can be achieved utilizing different techniques. One way of providing evidence that violations of the safety properties identified cannot occur is to thoroughly test each of the safety requirements. This paper introduces Evolutionary Safety Testing (EST), a fully automated procedure for the safety testing of embedded control software.
Technical Paper

Flow around an Isolated Wheel - Experimental and Numerical Comparison of Two CFD Codes

2004-03-08
2004-01-0445
This paper presents velocity and pressure measurements obtained around an isolated wheel in a rotating and stationary configuration. The flow field was investigated using LDA and a total pressure probe in the model scale wind tunnel at IVK/FKFS. Drag and lift were determined for both configurations as well as for the wheel support only. These results were used as a reference for comparing numerical results obtained from two different CFD codes used in the automotive industry, namely STAR-CD™ and PowerFLOW™. The comparison gives a good overall agreement between the experimental and the simulated data. Both CFD codes show good correlation of the integral forces. The influence of the wheel rotation on drag and lift coefficients is predicted well. All mean flow structures which can be found in the planes measured with LDA can be recognized in the numerical results of both codes. Only small local differences remain, which can be attributed to the different CFD codes.
X