Refine Your Search

Topic

Author

Search Results

Technical Paper

A Model-Based Brake Pressure Estimation Strategy for Traction Control System

2001-03-05
2001-01-0595
This paper presents a brake pressure estimation algorithm for Delphi Traction Control Systems (TCS). A control oriented lumped parameter model of a brake control system is developed using Matlab/Simulink. The model is derived based on a typical brake system and is generic to other types of brake control hardware systems. For application purposes, the model is simplified to capture the dominant dynamic brake pressure response. Vehicle experimental data collected under various scenarios are used to validate the algorithm. Simulation results show that the algorithm gives accurate pressure estimation. In addition, the calibration procedure is greatly simplified
Technical Paper

A Model-based Environment for Production Engine Management System (EMS) Development

2001-03-05
2001-01-0554
This paper describes an environment for the development of production Engine Management Systems (EMS). This includes a formal framework and modeling methodology. The environment is based on using Simulink/Stateflow for developing a control system executable specification and a plant model. This allows for simulations of the system to be performed at the engineer's desk, which is identical performance with production software. We provide the details for incorporating production legacy code into the Simulink/Stateflow control system. The system includes a multi-rate, and event driven operating system. This system is developed to facilitate new algorithm development and automated software testing. Based on Simulink/Stateflow this specification will be suitable for use with commercial automatic code generation tools.
Technical Paper

A System-Safety Process For By-Wire Automotive Systems

2000-03-06
2000-01-1056
Steer-by-wire and other “by-wire” systems (as defined in the paper) offer many passive and active safety advantages. To help ensure these advantages are achieved, a comprehensive system-safety process should be followed. In this paper, we review standard elements of system safety processes that are widely applied in several industries and describe the main elements of our proposed analysis process for by-wire systems. The process steps include: (i) creating a program plan to act as a blueprint for the process, (ii) performing a variety of hazard analysis and risk assessment tasks as specified in the program plan, (iii) designing and verifying a set of hazard controls that help mitigate risk, and (iv) summarizing the findings. Vehicle manufacturers and suppliers need to work together to create and follow such a process. A distinguishing feature of the process is the explicit linking of hazard controls to the hazards they cover, permitting coverage-based risk assessment.
Technical Paper

Advanced Canister Purge Algorithm with a Virtual [HC] sensor

2000-03-06
2000-01-0557
Both evaporative emissions and tailpipe emissions have been reduced by more than 90% from uncontrolled levels in state-of-the-art. However, now that the objective is to reach near-zero emission levels, the need for aggressive purging of the canister and fuel tank and the need for extremely precise control of engine Air/Fuel ratio (A/F) come into conflict. On-board diagnostics and the wide variation in operating conditions and fuel properties in the “real world” add to the challenge of resolving these conflicting requirements. An advanced canister purge algorithm has been developed which substantially eliminates the effect of canister purge on A/F control by estimating and compensating for the fuel and air introduced by the purge system. This paper describes the objectives and function of this algorithm and the validation of its performance.
Technical Paper

An Analytical Assessment of Rotor Distortion Attributed to Wheel Assembly

2001-10-28
2001-01-3134
The lateral runout of disc brake corner components can lead to the generation of brake system pulsation. Emphasis on reducing component flatness and lateral runout tolerances are a typical response to address this phenomenon. This paper presents the results of an analytical study that examined the effect that the attachment of the wheel to the brake corner assembly could have on the lateral distortion of the rotor. An analysis procedure was developed to utilize the finite element method and simulate the mechanics of the assembly process. Calculated rotor distortions were compared to laboratory measurements. A statistical approach was utilized, in conjunction with the finite element method, to study a number of wheel and brake corner parameters and identify the characteristics of a robust design.
Technical Paper

An Analytical Method to Predict Thermal Distortion of a Brake Rotor

2000-03-06
2000-01-0445
The severe thermal distortion of a brake rotor can affect important brake system characteristics such as the system response and brake judder propensity. This paper will propose a technique to determine the thermal distortion under transient or steady state conditions. The technique involves utilizing a PC-based computer program to calculate the necessary thermal parameters and apply the results as input to a finite element-based thermal stress analysis. This unique approach provides a reliable methodology to determine the heat input and cooling characteristics of a given brake system in addition to resultant distortion and stress components within the brake rotor. Analysis results are also compared to measured temperature and distortion data.
Technical Paper

An Integrated Approach to Automotive Safety Systems

2000-03-06
2000-01-0346
The industry strategy for automotive safety systems has been evolving over the last 20 years. Initially, individual passive devices and features such as seatbelts, airbags, knee bolsters, crush zones, etc. were developed for saving lives and minimizing injuries when an accident occurs. Later, preventive measures such as improving visibility, headlights, windshield wipers, tire traction, etc. were deployed to reduce the probability of getting into an accident. Now we are at the stage of actively avoiding accidents as well as providing maximum protection to the vehicle occupants and even pedestrians. Systems that are on the threshold of being deployed or under intense development include collision detection / warning / intervention systems, lane departure warning, drowsy driver detection, and advanced safety interiors.
Technical Paper

Analysis of Brake Caliper Seal-Groove Design

2002-03-04
2002-01-0927
It is well known that the design of the seal groove assembly in the brake caliper greatly influences the braking performance. The rubber seal performs the dual function of sealing the piston bore and retracting the caliper piston after a brake apply. However, the seal function is affected by the configuration of the seal groove, as well as the friction at the piston/seal and groove/seal interfaces. The material properties of the rubber seal are also important design parameters. Issues such as fluid displacement, piston retraction, piston sliding force, and brake drag are some of the critical brake performance parameters that must be considered in every caliper seal-groove design. Presently, the brake caliper seal groove design is still based on empirical rules established mainly from past experience and its performance is achieved through prototype testing.
Technical Paper

Comparison of Lidar-Based and Radar-Based Adaptive Cruise Control Systems

2000-03-06
2000-01-0345
Since the late 1980s, Delphi Automotive Systems has been very involved with the practical development of a variety of Collision Avoidance products for the near- and long-term automotive market. Many of these complex collision avoidance products will require the integration of various vehicular components/systems in order to provide a cohesive functioning product that is seamlessly integrated into the vehicle infrastructure. One such example of this system integration process was the development of an Adaptive Cruise Control system on an Opel Vectra. The design approach heavily incorporated system engineering processes/procedures. The critical issues and other technical challenges in developing these systems will be explored. Details on the hardware and algorithms developed for this vehicle, as well as the greater systems integration issues that arose during its development will also be presented.
Technical Paper

Complex Eigenvalue Analysis for Reducing Low Frequency Brake Squeal

2000-03-06
2000-01-0444
A front disc brake system is used as an example for an investigation of low frequency squeal. Many different modifications to this disc brake system have been proposed and this paper focuses on a solution that reduces the stiffness of the rotor. This is accomplished by a reduction in the Young's modulus of the rotor material. The complex eigenvalue method is used for a detailed analytical study in order to obtain a better understanding of this solution technique. Modal participation factors are calculated to examine the modal coupling mechanism. Parametric studies are also performed to find out the effects of friction coefficient and rotor stiffness. Results show that shifting rotor resonance frequencies may ecouple the modal interaction and eliminate dynamic instability, which is in agreement with experimental results.
Technical Paper

Dependable E/E System Drivers and Application Issues

2000-11-01
2000-01-C064
Today, electrical/electronic systems like ABS/power brakes and electric power steering are all designed to enhance, not replace a mechanical function. If an electrical or electronic fault occurs, the function reverts to the base mechanical capability. Future E/E systems, such as steer-by-wire and brake-by- wire replace mechanical linkages with electrical or optical signals as in computer networks. While these systems offer many potential safety benefits, they will require different strategies for dependability, and as with any vehicle system, they will further require that dependability be an integral part of the overall E/E system design. This paper illustrates how by-wire systems drive different dependability requirements and discusses some key technologies that are emerging to meet these requirements.
Technical Paper

Design and Development of a Mechanical Variable Valve Actuation System

2000-03-06
2000-01-1221
Compromises inherent with fixed valve lift and event timing have prompted engine designers to consider Variable Valve Actuation (VVA) systems for many decades. In recent years, some relatively basic forms of VVA have been introduced into production engines. Greater performance and driveability expectations of customers, more stringent emission regulations set by government legislators, and the mutual desire for higher fuel economy are increasingly at odds. As a solution, many OEM companies are seriously considering large-scale application of higher function VVA mechanisms in their next generation vehicles. This paper describes the continuing development progress of a mechanical VVA system. Design features and operation of the mechanism are explained. Test results are presented in two sections: motored cylinder head test data focuses on VVA system friction, control system performance, valve lift and component stress.
Technical Paper

Development Experience with Steer-by-Wire

2001-08-20
2001-01-2479
Recent advances in dependable embedded system technology, as well as continuing demand for improved handling and passive and active safety improvements, have led vehicle manufacturers and suppliers to actively pursue development programs in computer-controlled, by-wire subsystems. These subsystems include steer-by-wire and brake-by-wire, and are composed of mechanically de-coupled sets of actuators and controllers connected through multiplexed, in-vehicle computer networks; there is no mechanical link to the driver. This paper addresses fundamental benefits and issues of steer-by-wire, especially those related to automated vehicle control and steering feel quality as perceived by the driver.
Technical Paper

Development of a Controlled Braking Strategy For Vehicle Adaptive Cruise Control

2000-03-06
2000-01-0109
Adaptive Cruise Control (ACC) technology is presently on the horizon as a convenience function intended to reduce driver workload. This paper presents an implementation of a brake algorithm, which extends the production cruise control feature. A brief overview of the system architecture and subsystem interfaces to the forward-obstacle detection system, throttle and engine management controls are described. Considerations of moding ACC with ABS and Traction Control are presented at the vehicle level. This development activity is presented in two major phases. Both phases of this development project utilize CAN controllers and transceivers to implement requirements for limited access highway driving. The initial phase of development requires the brake control to follow a deceleration command and operate “open-loop” to the vehicle controller. Vehicle test data capturing smooth stops on high coefficient surfaces is presented as insight to the braking performance of the vehicle.
Technical Paper

Development of a Haptic Braking System as an ACC Vehicle FCW Measure

2002-05-07
2002-01-1601
This work examines the development and implementation of a pulsing brake control system as part of a Forward Collision Warning (FCW) System for an Adaptive Cruise Control (ACC) prototype vehicle. The brake pulse is a likely candidate to be employed with visual and auditory cues in the event of an imminent collision alert level when the driver is not in ACC mode.
Technical Paper

Diagnostic Development for an Electric Power Steering System

2000-03-06
2000-01-0819
Electric power steering (EPS) is an advanced steering system that uses an electric motor to provide steering assist. Being a new technology it lacks the extensive operational history of conventional steering systems. Also conventional systems cannot be used to command an output independent of the driver input. In contrast EPS, by means of an electric motor, could be used to do so. As a result EPS systems may have additional failure modes, which need to be studied. In this paper we will consider the requirements for successful EPS operation. The steps required to develop diagnostics based on the requirements are also discussed. The results of this paper have been implemented in various EPS-based programs.
Technical Paper

Disc Brake Corner System Modeling and Simulation

1999-10-10
1999-01-3400
This paper documents the advantages of brake corner system modeling and simulation over traditional component analysis techniques. A better understanding of the mechanical dynamics of the disc-braking event has been gained through brake corner system modeling and simulation. Single component analyses do not consider the load transfer between components during the braking event. Brake corner system analysis clearly quantifies the internal load path and load transfer sequence between components due to clearances or tolerance variations in the brake assembly. By modeling the complete brake corner assembly, the interaction between components due to the contact friction loads and variational boundary conditions can be determined. The end result permits optimal design of brake corner systems having less deflection, lower stress, optimum material mass, and reduced lead-time for new designs.
Technical Paper

Electronic Suspension System Control Utilizing ABS System Wheel Speed Sensors

1999-12-01
1999-01-3079
This paper describes a semi-active damping control system that responds in real-time to road and driving conditions based on body motions as determined through ABS wheel speed sensors. The use of these existing sensors for vehicle information eliminates the need for the additional sensors (e.g. accelerometers and body-to-wheel position/velocity sensors) that are commonly part of semi-active suspension systems. This technology also allows for further cost and part count reductions through the combination of the suspension and brake controls into a single electronic control unit. This paper has been previously presented in 1998 at the SAE Controlled Suspension System Toptec.
Technical Paper

Estimation of Vehicle Side Slip Angle and Yaw Rate

2000-03-06
2000-01-0696
An algorithm for estimation of vehicle yaw rate and side slip angle using steering wheel angle, wheel speed, and lateral acceleration sensors is proposed. It is intended for application in vehicle stability enhancement systems, which use controlled brakes or steering. The algorithm first generates two initial estimates of yaw rate from wheel speeds and from lateral acceleration. A new estimate is subsequently calculated as a weighted average of the two initial ones, with the weights proportional to confidence levels in each estimate. This preliminary estimate is fed into a closed loop nonlinear observer, which generates the final estimate of yaw rate along with estimates of lateral velocity and side slip angle. Parameters of the observer depend on the estimated surface coefficient of adhesion, thus providing adaptation to changes in road surface coefficient of adhesion.
Technical Paper

Identification and Elimination of Steering Systems Squawk Noise

1997-05-20
972058
The problem being investigated involves a noise-quality issue on a power steering application, when a sudden change of steering wheel angle generates an unwanted steering system noise or “Squawk.” This phenomenon is mostly observed during parking maneuvers, especially at lock positions and when the hydraulic fluid reaches a critical temperature on the specific application. The objective of the work to solve this noise-quality issue was to first identify the cause and then eliminate the Squawk noise. There were several constraints: No change could be made in the properties or type of hydraulic fluid used due to specification requirements; Steering wheel valve torsion bar characteristic (torque vs. angle) needed to be maintained within specification for ride and handling purposes; and, In addition to the mentioned constraints, a high capability of noise elimination generated by the production tolerances and dispersion has been considered.
X