Refine Your Search

Topic

Author

Search Results

Technical Paper

42V Power Supply Systems Impact for Emerging Market Projects

2005-11-22
2005-01-4115
This paper provides a survey about the consequences of a 42V Power Supply System for new vehicle projects, specially, its impact on directed project for Emerging Markets. At a first moment, it will be described new systems and its demand for additional power availability for future projects, such as electrical steering and brake systems; electrical air conditioning compressor; and electrical water and oil pumps. Following this subject, it will be presented possible alternatives for 14/42V Power Supply Systems, and also its impact over Power and Signal Distribution System components, such as connector, terminals, cables, relays, electrical centers, etc. Finally, the previous presented scenarios will be analyzed under a point of view for the Emerging Market demand for such new proposed systems, looking for best alternative driven.
Technical Paper

A Review of Cell Equalization Methods for Lithium Ion and Lithium Polymer Battery Systems

2001-03-05
2001-01-0959
Lithium-based battery technology offers performance advantages over traditional battery technologies at the cost of increased monitoring and controls overhead. Multiple-cell Lead-Acid battery packs can be equalized by a controlled overcharge, eliminating the need to periodically adjust individual cells to match the rest of the pack. Lithium-based based batteries cannot be equalized by an overcharge, so alternative methods are required. This paper discusses several cell-balancing methodologies. Active cell balancing methods remove charge from one or more high cells and deliver the charge to one or more low cells. Dissipative techniques find the high cells in the pack, and remove excess energy through a resistive element until their charges match the low cells. This paper presents the theory of charge balancing techniques and the advantages and disadvantages of the presented methods.
Technical Paper

A System-Safety Process For By-Wire Automotive Systems

2000-03-06
2000-01-1056
Steer-by-wire and other “by-wire” systems (as defined in the paper) offer many passive and active safety advantages. To help ensure these advantages are achieved, a comprehensive system-safety process should be followed. In this paper, we review standard elements of system safety processes that are widely applied in several industries and describe the main elements of our proposed analysis process for by-wire systems. The process steps include: (i) creating a program plan to act as a blueprint for the process, (ii) performing a variety of hazard analysis and risk assessment tasks as specified in the program plan, (iii) designing and verifying a set of hazard controls that help mitigate risk, and (iv) summarizing the findings. Vehicle manufacturers and suppliers need to work together to create and follow such a process. A distinguishing feature of the process is the explicit linking of hazard controls to the hazards they cover, permitting coverage-based risk assessment.
Technical Paper

An Engine Coolant Temperature Model and Application for Cooling System Diagnosis

2000-03-06
2000-01-0939
A coolant temperature model of an internal combustion engine has been formulated to meet the new On-Board Diagnostics II (OBD II) requirement for coolant temperature rationality. The model utilizes information available within the production Engine Control Module (ECM). The temperature prediction capability has been tested for various “real-world” driving conditions and cycles along with regulated drive cycles. The model can be calibrated to find the appropriate timing for initiation of a diagnostic algorithm for engine cooling system and Coolant Temperature Sensor (CTS) faults. A diagnostic scheme has been developed to detect and isolate various types of cooling system failures using engine soak time information available from a low power timer in the ECM.
Technical Paper

An Expandable Passive Optical Star Network Architecture for Automotive Applications

1999-03-01
1999-01-0303
When comparing vehicle communication architectures, the passive star network has been shown to be the highest fault tolerant system. Despite this trait, the passive star architecture has not been widely implemented due to its potential application limitations: insufficient node count and relatively short node lengths. These constraints arise from the basic function of the star, i.e. to evenly distribute a given amount of optical power to all nodes connected to the star without amplification or retransmission. This paper provides a solution to overcome the limitations of the passive star through the introduction of a new communication component, the Active Distribution Node (ADN). The ADN enables a passive star network to support larger node counts and significantly longer node lengths, without sacrificing fault tolerance or the low cost nature of the basic passive star architecture.
Technical Paper

Automotive Miniaturization Trend: Challenges for Wiring Harness Manufacturing

2010-10-06
2010-36-0160
One of the most evident trends in automotive sector is miniaturization. It is related to considerable benefits due to the potential of mass reduction, cost reduction and efficiency improvement. It involves many different automobile components and most of them are facing challenges to achieve the targets defined by car makers and final consumers. Specifically for wiring harness, it seems to be many manufacturing and process challenges to be surpassed in order to fully perceive the benefits expected with miniaturization, internally and externally. So this article aims to present an overview of literature as well as reporting of experts on this issue mentioning some of the challenges that global automotive wiring harness manufacturers are facing. Subjects as assembly automation, terminal connection and small gauge cables are discussed in the article and also a general overview of how those problems are being addressed in order to meet customer requirements.
Technical Paper

Barometric Pressure Estimator for Production Engine Control and Diagnostics

1999-03-01
1999-01-0206
A Barometric Pressure Estimator (BPE) algorithm was implemented in a production speed-density Engine Management System (EMS). The BPE is a model-based, easily calibrated algorithm for estimating barometric pressure using a standard set of production sensors, thereby avoiding the need for a barometric pressure sensor. An accurate barometric pressure value is necessary for a variety of engine control functions. By starting with the physics describing the flow through the induction system, an algorithm was developed which is simple to understand and implement. When used in conjunction with the Pneumatic and Thermal State Estimator (PSE and TSE) algorithms [2], the BPE requires only a single additional calibration table, generated with an automated processing routine, directly from measured engine data collected at an arbitrary elevation, in-vehicle or on a dynamometer. The algorithm has been implemented on several different engines.
Technical Paper

Batteries for 42/14 Volt Automotive Electrical Systems

2000-08-21
2000-01-3065
The automotive industry is moving to a higher voltage for the electrical system. This change will occur because the total electrical power required by the vehicles will increase to a level where the current requirements at 14 volts will be impractical. Some of the new loads will change the duty cycle of the battery. The most notable change is the proposed start/stop mode of vehicle operation where the engine is stopped and restarted frequently to avoid prolonged operation at idle. An additional feature would be to use an electric motor to assist in acceleration and/or to actually launch the vehicle. This paper addresses the changes in battery requirements brought on by these new features. A means of analysis for choosing the appropriate battery technology is presented. We also propose a life test to establish a benchmark for current battery technology when it is used in a new duty cycle.
Technical Paper

Closed Loop Start of Combustion Control Utilizing Ionization Sensing in a Diesel Engine

1999-03-01
1999-01-0549
This paper describes the technique of in-cylinder ionization sensing in a common rail diesel engine. The technology detects in real time, the start of combustion for both pilot and main combustion enabling the fuel control strategy to change from open to closed loop, thus, maintaining the desired start of combustion for all speeds and loads. Additionally, the ionization sensing enables the ECM to truly correct for changes in ignition delays caused by as an example a change in fuel cetane number or in air, fuel and engine temperature. The conclusions are that ionization sensing improves the ability to control a diesel engine and is a feasible technology for production vehicles.
Technical Paper

Comparative Study of Hybrid Powertrain Strategies

2001-08-20
2001-01-2501
Hybrid electric vehicles have the potential to reduce air pollution and improve fuel economy without sacrificing the present conveniences of long range and available infrastructure that conventional vehicles offer. Hybrid vehicles are generally classified as series or parallel hybrids. A series hybrid vehicle is essentially an electric vehicle with an on-board source of power for charging the batteries. In a parallel hybrid vehicle, the engine and the electric motor can be used to drive the vehicle simultaneously. There are various possible configurations of parallel hybrid vehicles depending on the role of the electric motor/generator and the engine. In this paper, a comparative study of the drivetrains of five different hybrid vehicles is presented. The underlying design architectures are examined, with analysis as to the tradeoffs and advantages represented in these architectures.
Technical Paper

Comparison of Air Meter Interface Strategies for Engine Management Systems

2000-03-06
2000-01-0546
When an air meter is specified for an engine management system, air meter accuracy is given high priority. Air meter manufacturers characterize the accuracy of their products using laboratory instrumentation to measure the air meter output vs. flow characteristics. Ultimately the air meter is applied to an engine management system in a vehicle. The engine management system must use the information provided by the air meter without the benefit of laboratory instrumentation. Therefore, the entire measurement system must be considered in evaluating the effective accuracy. The most fundamental aspect to consider is the output signal format between the air meter and the engine management system. Two commonly available formats will be investigated: frequency and voltage.
Technical Paper

Concept to Production: Continuous Surface Keypad Switch

1999-03-01
1999-01-0413
The objective of this paper is to impart the challenges presented and the solutions derived to transform an artist's rendering into a production driver's door switch to be used in the interior of a high profile sports car. The challenges took many forms throughout the process, from data translation and packaging, to the final decorative issues. The results are a finished product providing a new approach to automotive interior switch design. It incorporates a low profile, continuous plane keypad with “soft touch” feel, tactile feedback, and integrated back lighting.
Technical Paper

Delphi Electronic Throttle Control Systems for Model Year 2000;Driver Features, System Security, and OEM Benefits. ETC for the Mass Market

2000-03-06
2000-01-0556
Delphi has developed a second-generation Electronic Throttle Control system optimized for high volume applications. The Delphi system integrates several unique driver performance features, extensive security/diagnostics, and provides significant benefits for the vehicle manufacturer. For Model Year 2000, the Delphi ETC system has been successfully implemented on several popular SUVs and passenger cars built and sold around the world. The ETC driver features, security systems, and manufacturer benefits are presented as implemented on these Model Year 2000 applications.
Technical Paper

Development Experience with Steer-by-Wire

2001-08-20
2001-01-2479
Recent advances in dependable embedded system technology, as well as continuing demand for improved handling and passive and active safety improvements, have led vehicle manufacturers and suppliers to actively pursue development programs in computer-controlled, by-wire subsystems. These subsystems include steer-by-wire and brake-by-wire, and are composed of mechanically de-coupled sets of actuators and controllers connected through multiplexed, in-vehicle computer networks; there is no mechanical link to the driver. This paper addresses fundamental benefits and issues of steer-by-wire, especially those related to automated vehicle control and steering feel quality as perceived by the driver.
Technical Paper

Development of a Non-Thermal Plasma Reactor Electrical Model for Optimum NOx Removal Performance

2000-10-16
2000-01-2893
A double dielectric barrier discharge reactor driven by an alternating voltage is a relatively simple approach to promote oxidation of NO to NO2 for subsequent reduction in a catalyst bed. The chemical performance of such a non-thermal plasma reactor is determined by its current and electric field behavior in the gap, and by the fraction of the current carried by electrons, because the key reactants which initiate the NO oxidation and accompanying chemical changes are produced there, mostly by electron impact. We have tried to determine by models and experiments the bounds on performance of double dielectric barrier reactors and guidelines for optimization. Models reported here predict chemical results from time-resolved applied voltage and series sense capacitor data.
Technical Paper

Diagnostic Strategies for Advanced Automotive Systems

2002-10-21
2002-21-0024
In recent years, the desire for improved vehicle performance, reliability and safety have increased the electrical content and its complexity in vehicles. Advanced automotive systems integrate sensors, controllers, actuators and communication networks. To maintain safety and reliability, a comprehensive system of diagnostics and physical and analytic redundancy are used. In some cases, diagnostic strategies based on analytical redundancy can provide detection, as well as fault-tolerance, and may provide benefits in cost, packaging, flexibility and reusability. This paper discusses a range of diagnostic methods and their applicability to advanced automotive systems such as X-by-Wire. It will also show the reduction to practice of an advanced analytical technique for an automotive application.
Technical Paper

Dual-Voltage Electrical System with a Fuel Cell Power Unit

2000-08-21
2000-01-3067
Fuel cells show great promise in generating electrical power for a variety of uses. In the automotive realm, one focus has been on the use of fuel cells for primary vehicle propulsion. Another emerging application is the fuel cell as the primary provider of electrical power to the vehicle, augmenting or replacing the traditional alternator, while producing higher power levels. The advantage of the fuel cell in this role is that the fuel cell operation is de-coupled from that of the engine. High power levels can be achieved independent of engine speed and power can be produced without the engine running. This paper examines the application of a fuel cell auxiliary power unit (APU) to a dual-voltage 42V/14V automotive electrical system meeting the evolving 42V PowerNet specifications. An architecture for this electrical system is presented, followed by a sizing analysis to properly match the fuel cell stack to the voltage of the PowerNet and to a 42V battery pack.
Technical Paper

Energy Harvesting as Strategy for Reducing Vehicles Emissions

2012-10-02
2012-36-0114
In vehicular mobility context, it is extremely important for the environmental sustainability that the available energy will be used as efficiently as possible, both in the use of internal combustion engines (ICE) as powertrain, as well in the application of Hybrid and Electric Vehicle Motors (HEV/EV). In this comparison, ICE has a lower efficiency when compared to electric motors, wasting much of the potential energy of the fuel in form of heat and noise. On the other hand, the electric vehicles face limitation in autonomy and recharge time, demanding for a more efficient use of energy stored in batteries. This study aims to present emerging technologies for reuse of energy within the automotive context, originally known as “Energy Harvesting” and “Renewable Energies”.
Technical Paper

Environmentally Friendly Car Wiring System

2002-03-04
2002-01-0595
Legal requirements and responsibility for the environment require improved recyclability of car components. This can be achieved by a reduction in the variety of materials used, which can be separated after use. This is being demonstrated for wiring harnesses using a new hook and loop based fastening system. Easier assembly and disassembly, elimination of fixation holes in the car body, and improved serviceability can lead to considerable cost reductions. Field experience on test cars will be available at a later date.
Technical Paper

Full Hybrid Electrical Vehicle Battery Pack System Design, CFD Simulation and Testing

2010-04-12
2010-01-1080
CFD analysis was performed using the FLUENT software to design the thermal system for a hybrid vehicle battery pack. The battery pack contained multiple modular battery elements, called bricks, and the inlet and outlet bus bars that electrically connected the bricks into a series string. The simulated thermal system was comprised of the vehicle cabin, seat cavity, inlet plenum, battery pack, a downstream centrifugal fan, and the vehicle trunk. The fan was modeled using a multiple reference frame approach. A full system analysis was done for airflow and thermal performance optimization to ensure the most uniform cell temperatures under all operating conditions. The mesh for the full system was about 13 million cells run on a 6-node HP cluster. A baseline design was first analyzed for fluid-thermal performance. Subsequently, multiple design iterations were run to create uniform airflow among all the individual bricks while minimizing parasitic pressure drop.
X