Refine Your Search

Topic

Author

Search Results

Technical Paper

A Stiffness Optimization Procedure for Automobile Rubber Mounts

2001-04-30
2001-01-1445
Generally, it is well known that road noise generated by vibration from automobile tires and suspensions can be reduced by changing the stiffness of the rubber mounts installed in the suspension systems. Such stiffness, however, is rarely changed to avoid riding discomfort and so on. In this paper, a stiffness optimization method for suspension system rubber mounts that reduces road noise, and improves riding comfort as well, is presented. In the process, Road Noise Contribution Analysis (RNCA) is applied to the target vehicle to specify the major factors of road noise. Furthermore, the suspension system of the vehicle is investigated by Sensitivity Analysis using Measured FRF data (SAMF) to identify the optimal stiffness combination of rubber mounts. As a result, an effective stiffness combination of two mounts is specified to reduce road noise and to improve riding comfort.
Technical Paper

A Study of Direct Injection Diesel Engine Fueled with Hydrogen

2003-03-03
2003-01-0761
In this study, characteristics of the development and auto-ignition/combustion of hydrogen jets were investigated in a constant-volume vessel. The authors focused on the effects of the jet developing process and thermodynamic states of the ambient gas on auto-ignition delays of hydrogen jets. The results show that the ambient gas temperature and nozzle-hole diameter are significantly effective parameters. By contrast, it is clarified that the ambient gas oxygen concentration has a weak effect on the auto-ignition/combustion of hydrogen jets. Consequently, it is supposed that the mixture formation process is capable of improving the auto-ignition/combustion of hydrogen jets.
Journal Article

Acceleration Performance Analysis for Rubber V-Belt CVT with Belt Tension Clutching

2015-11-17
2015-32-0731
The power train system for Utility Vehicles (UVs) or All-Terrain Vehicles (ATVs) mainly consists of a rubber V-belt CVT. The adjustment of the CVT specification requires many steps to realize the shifting operations of the CVT so as to satisfy the acceleration feeling of the driver. In this paper, we report on the simulation technology that predicts the transient behavior during an acceleration of the vehicle equipped with a belt tension clutching CVT, which has both functions of the shift operation and the clutch action. By using the developed simulation technique, it has become possible to adjust the CVT specifications efficiently.
Technical Paper

Analysis of Diesel Spray Structure by Using a Hybrid Model of TAB Breakup Model and Vortex Method

2001-03-05
2001-01-1240
This study proposes a hybrid model which consists of modified TAB(Taylor Analogy Breakup) model and DVM(Discrete Vortex Method). In this study, the simulation process is divided into three steps. The first step is to analyze the breakup of droplet of injected fuel by using modified TAB model. The second step based on the theory of Siebers' liquid length is analysis of spray evaporation. The liquid length analysis of injected fuel is used for connecting both modified TAB model and DVM. The final step is to reproduce the ambient gas flow and inner vortex flow injected fuel by using DVM. In order to examine the hybrid model, an experiment of a free evaporating fuel spray at early injection stage of in-cylinder like conditions had been executed. The numerical results calculated by using the present hybrid model are compared with the experimental ones.
Technical Paper

Application of Active Control Technologies and Structural Optimization for Supersonic Commercial Transport

1996-10-01
965560
A design procedure is presented which utilizes (1) the active control technologies such as Flutter Mode Control, Gust Load Alleviation and Maneuver Load Control to relax the strength and stiffness requirements on wing structure, and (2) structural optimization to derive the minimum weight composite wing structures satisfying the relaxed structural requirements. The design procedure is applied to the preliminary design study of a Supersonic Commercial Transport configuration with laminated composite wing structure. Four design configurations are compared. Maximum of about 30% structural weight reduction was achieved from the quasi-isotropic design. Also some insights on the characteristics of the Supersonic Commercial Transport configuration are discussed.
Technical Paper

Application of OSC Estimation Technology of the Catalyst to the Air-Fuel Ratio Control of the Motorcycle

2015-11-17
2015-32-0752
The regulation for emission gas of the motorcycle is rapidly being strengthened as the concern about global environment grows around the world, and manufacturers are facing the problem to reduce the toxic materials in the emission gas more. As the technology to reduce the toxic materials, it is common to install a three way catalyst (TWC) on an exhaust system and optimize the oxygen concentration at the inlet of TWC by maintaining air fuel ratio (A/F) on stoichiometric A/F with the control of fuel injection quantity. Furthermore, TWC itself is designed to maintain proper oxygen concentration by the addition of a substance with oxygen storage capacity (OSC), which is able to suppress the variation of the oxygen concentration.
Technical Paper

Atomization Model in Port Fuel Injection Spray for Numerical Simulation

2023-09-29
2023-32-0091
Computational Fluid Dynamics (CFD) simulation is widely used in the development and validation of automotive engine performance. In engine simulation, spray breakup submodels are important because spray atomization has a significant influence on mixture formation and the combustion process. However, no breakup models have been developed for the fuel spray with plate-type multi-hole nozzle installed in port fuel injection spark ignition (SI) engines. Therefore, the purpose of this study is to simulate spray formation in port fuel injection precisely. The authors proposed the heterogeneous sheet breakup model for gasoline spray injected from plate type multi-hole nozzle. The novel breakup model was developed by clarifying the phenomenological mechanism of the spray atomization process. In this paper, this model was improved in dispersion characteristics and evaluated by the comparison of the model calculation results with experimental data.
Technical Paper

Change of Relative Local Velocity in Pulley Groove at Sliding between Belt and Pulleys for Metal Pushing V-Belt Type CVT

2023-10-24
2023-01-1851
The objective of this study was to investigate the change of relative local velocity in each pulley groove at sliding between the belt and pulleys for a metal-pushing V-belt type CVT where micro elastic slips were inevitably accompanied to transmit power, while the transmissions were widely adopted to provide comfortable driving by continuously automatically adjusting the speed ratio. Local changes of wrapping radial position and velocity of the belt in each pulley groove of the CVT were simultaneously measured by a potentiometer with a spinning roller in the experiments. The mechanical power generated by the AC motor was transmitted through the CVT unit from the driving axis to the driven axis as usual under practical conditions while the speed ratio was set to 1.0. Pulley clamping force was applied by oil pressure.
Technical Paper

Characteristics of Intermediate Products Generated During Diesel Combustion by Means of Total Gas Sampling

2004-10-25
2004-01-2923
It is very significant to take the intermediate products in diesel combustion for understanding the generation of exhaust emissions like SOF, dry soot and so on. The products generated in a constant volume combustion chamber were sampled by pricking a sheet of polyester film installed in the chamber to freeze the chemical reaction. The gas was analyzed by a gas chromatography. The fuel used was n-heptane. It is able to explain the generation of exhaust emissions by the experimental results. The other objective is to simulate the intermediate products. It is capable of explaining the relation between the simulated and experimental results.
Technical Paper

Development of Alternative Fuel Content Estimation Method and Apparatus

2013-10-15
2013-32-9156
Environmental and energy independence concerns have stimulated the development of an apparatus for alternative fuel. It estimates the ethanol content in the fuel in order to perform a reliable combustion. One means for measuring the ratio of ethanol present in the fuel tank is to provide a fuel composition sensor. However, such a fuel composition sensor increases the number of parts and causes the cost issues in motorcycles. We used an oxygen sensor disposed to the exhaust pipe to estimate the ethanol content without increasing the parts and costs. The common method of the estimation is the oxygen feed-back in stoichiometric air fuel ratio condition. Unfortunately, two-wheel vehicles are often operated in rich conditions and have less chance of stoichiometric condition. In this study, we used a one-liter four-cylinder motorcycle, and have developed a practical method to estimate the ethanol content even in the not-stoichiometric condition.
Technical Paper

Development of Direct Injection Technology for Motorcycle Gasoline Engine

2023-10-24
2023-01-1850
The authors developed a gasoline engine that combined direct injection and port fuel injection in order to improve fuel economy for motorcycles. Compared to passenger car engines, motorcycle engines generally have smaller displacement and operate at higher engine speed, so the bore and stroke are generally smaller than those of passenger cars. Therefore, the direct injection spray characteristics optimized for small bore and stroke were selected to reduce fuel adhesion to various parts of the combustion chamber wall. In addition, this engine employed the high tumble intake port that can both strengthen turbulence intensity and suppress the decrease in volumetric efficiency to a lower level. Also, stratification of air-fuel mixture and split injection were employed for reducing catalyst warm-up time and soot. The results showed that excellent fuel economy was achieved without sacrificing engine output performance while meeting emissions regulations.
Technical Paper

Development of Fatigue Durability Evaluation Technology for Motorcycle Frame

2015-11-17
2015-32-0811
In the development of a motorcycle frame, the balance between high performance and reliability and a short development period are important. In this study, a fatigue durability evaluation technique for a motorcycle frame was developed to enable highly accurate development within a short period of time. Furthermore, we developed a shaking table excitation system as a means to supplement the road test.
Technical Paper

Development of Oxygen Generation System for Spacecraft

1993-07-01
932270
Regenerative processes for the air revitalization system of spacecraft atmosphere are essential for realization of long-term manned space missions. These processes include Oxygen (O2) Generation System (OGS) through water electrolysis. The authors have been studying O2 generation system of a new Solid Polymer Water Electrolyte (SPWE) with simplified cell structure since 1985. The initial study results until 1991 were presented in the 21st and the former International Conference on Environmental Systems shown in REFERENCE. This paper describes a follow-on study activity to OGS which focuses on the improvement of cell endurance performance and resource.
Technical Paper

Development of Oxygen Generation System for a Long Manned Mission

1996-07-01
961370
An Oxygen Generation System (OGS) is an indispensable system for a long manned space mission. A Solid Polymer Water Electrolysis System (SPWES) has been developing by Kawasaki Heavy Industries, Ltd. for a future space mission since 1985. The authors have been studying the SPWES of a new solid polymer electrolyte with simplified cell structure. We presented the initial study results until 1993 at the former International Conference on Environmental Systems (ICES) shown in REFERENCE. The study was focused on the development of a SPWE cell at ambient pressure. This paper describes a follow-on study results related to development activity of a pressure cell module especially.
Technical Paper

Development of Spraying Technology for Improving the Wear Resistance of Engine Cylinder Bores

2003-09-15
2003-32-0066
In response to design requirements for lower weight and higher output, the motorcycle engine cylinder block has evolved from a cast cylinder block to an aluminum alloy cylinder block whose bore walls are surface-treated for wear-resistance. Hard-chromium plating, nickel-compound plating, and the like are in wide use as the wear-resistance surface treatment method, but spray technology has recently been attracting attention because of less impact on the environment, superior initial running-in performance and good oil retention. We have been applying a unique spraying method called wire explosion spraying to those models with a special need for wear-resistance surface. In this report we describe our wire explosion spray technology. With the aim of improving the bond strength of the sprayed coat, we studied the effects of the collided particles' form on bond strength in the wire explosion spraying conditions.
Technical Paper

Development of a Drill Bit for CFRP/Aluminum-Alloy Stack: To Improve Flexibility, Economical Efficiency and Work Environment

2013-09-17
2013-01-2227
In the expansion of composite material application, it is one of the most important subjects in assembly of aircraft structure how drilling of composite/metal stack should be processed in an efficient way. This paper will show the result of development of a drill bit for CFRP/Aluminum-alloy stack by Kawasaki Heavy Industries (KHI) and Sumitomo Electric Hardmetal (SEH). In order to improve workability and economic performance, the drill bit which enables drilling CFRP/Al-alloy stack: at 1 shot; from both directions; without air blow and coolant (just usual vacuuming); was required. A best mix drill bit which has smooth multi angles edge and pointed finishing edge was produced as a result of some trials. Developed drill bit achieved required performance and contributed to large cost reduction, labor hour saving, production speed increase and work environment improvement.
Technical Paper

Development of a Magnesium Swing Arm for Motorcycles

2004-09-27
2004-32-0048
In order to improve the fuel efficiency and the operating performance of motorcycles, there is a need to reduce their weight. Magnesium, which is the lightest of the various metals currently being used and has a high specific strength, has the potential to satisfy that need. We conducted a study to clarify the weldability and strength characteristics of, and the most suitable surface treatment for, extruded magnesium alloys and rolled magnesium alloys. Based on the stress analysis by the finite element method, we designed a magnesium swing arm and produced the prototype swing arm by pressing hot rolled AZ31 magnesium alloy plates and welding them. The prototype is about 10% lighter and has higher torsional rigidity than a conventional aluminum swing arm.
Technical Paper

Effect of Convective Schemes on LES of Fuel Spray by Use of KIVALES

2008-04-14
2008-01-0930
In this study, a numerical experiment using a 2D convective equation and LES of an evaporative diesel spray for different convective schemes has been performed to examine effects of convective schemes on a fuel-air mixture formation of the diesel spray simulation and to determine the convective scheme used in KIVALES. In addition to KIVALES original schemes, such as QSOU, PDC and IDC, CIP was incorporated into KIVALES in order to calculate the convective terms with low numerical diffusion. The numerical experiment using the 2D convective equation showed that the numerical diffusion of CIP scheme was lowest in the convective schemes used in present study. However CIP scheme used was not a monotone scheme completely due to the overshoot and the undershoot of the scalar provided near the boundary. Hence, CIP scheme was employed for only the convective term of the LES momentum equation, while the other convective schemes were calculated using QSOU, which is a monotone scheme.
Technical Paper

Effect of Initial Fuel Temperature on Spray Characteristics of Multicomponent Fuel

2020-09-15
2020-01-2113
Fuel design concept has been proposed for low emission and combustion control in engine systems. In this concept, the multicomponent fuels, which are mixed with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components), are used for artificial control of fuel properties. In addition, these multicomponent fuels can easily lead to flash boiling which promote atomization and vaporization in the spray process. In order to understand atomization and vaporization process of multicomponent fuels in detail, the model for flash boiling spray of multicomponent fuel have been constructed and implemented into KIVA3V rel.2. This model considers the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets.
Technical Paper

Effects of Ambient Gas Conditions on Ignition and Combustion Process of Oxygenated Fuel Sprays

2003-05-19
2003-01-1790
This work presents the ignition delay time characteristics of oxygenated fuel sprays under simulated diesel engine conditions. A constant volume combustion vessel is used for the experiments. The fuels used in the experiments were three oxygenated fuels: diethylene glycol dibutyl ether, diethylene glycol diethyl ether, and diethylene glycol dimethyl ether. JIS 2nd class gas oil was used as the reference fuel. The ambient gas temperature and oxygen concentration were ranging from 700 to 1100K and from 21 to 9%, respectively. The results show that the ignition delay of each oxygenated fuel tested in this experiments exhibits shorter than that of gas oil fuel for the wide range of ambient gas conditions. Also, NTC (negative temperature coefficient) behavior which appears under shock tube experiment for homogenous fuel-air mixture was observed on low ambient gas oxygen concentration for each fuel. And at the condition, the ignition behavior exhibits two-stage phase.
X