Refine Your Search

Topic

Search Results

Technical Paper

3D Countersink Measurement

2015-09-15
2015-01-2510
Accurate measurement of countersinks in curved parts has always been a challenge. The countersink reference is defined relative to the panel surface which includes some degree of curvature. This curvature thus makes accurate measurements very difficult using both contact and 2D non-contact measurements. By utilizing structured light 3D vision technologies, the ability to very accurately measure a countersink to small tolerances can be achieved. By knowing the pose of the camera and projector, triangulation can be used to calculate the distance to thousands of points on the panel and countersink surface. The plane of the panel is then calculated using Random Sample Consensus (RANSAC) method from the dataset of points which can be adjusted to account for panel curvatures. The countersink is then found using a similar RANSAC method.
Technical Paper

5-Axis Flex Track System

2012-09-10
2012-01-1859
Flex Track Systems are seeing increased usage in aerospace applications for joining large assemblies, such as fuselage sections. Previous systems were limited to work pieces that allowed the tracks to follow a gentle radius of curvature, limiting the locations where the system could be used. This paper describes a new 5-Axis Flex Track System developed to expand the usage of the systems, allowing them to process work pieces containing complex and irregular contours. Processing complex contours is accomplished through the addition of A and B axes providing normalization in multiple directions. These new systems are configured with the latest multi-function process capabilities allowing drilling, hole quality measurement, and temporary or permanent fastener installation.
Journal Article

A Process for Delivering Extreme AFP Head Reliability

2019-03-19
2019-01-1349
Every now and then a good idea happens. The Modular head was a great idea and enabled the use of multiple types of AFP heads, ATL, ply cutting, part probing, etc. with the use of a single machine and machining cell. At the time the modular head was developed by Electroimpact circa 2004, the industry assumed (and accepted) that AFP was an unreliable process. It still isn’t as reliable as we’d like. One way of coping with this lack of reliability is to stage more than one head in the AFP cell so that a spare head of the exact same type is ready to jump into action if the head out on the floor has an issue. If the reliability of the AFP process were to increase 10x or 50x, would there still be a business case for the multiple AFP head system? The modular head may still win the day, but the metrics change. For instance, if there was only 20 minutes of down time for every head load, it may no longer be advantageous to have 2 heads of the exact same type in the cell.
Technical Paper

An Automated Production Fastening System for LGP and Hi-Lok Titanium Bolts for the Boeing 737 Wing Panel Assembly Line

2015-09-15
2015-01-2514
A new automated production system for installation of Lightweight Groove Proportioned (LGP) and Hi-Lock bolts in wing panels has been implemented in the Boeing 737 wing manufacturing facility in Renton, Washington. The system inserts LGP and Hi-Lok bolts into interference holes using a ball screw mechanical squeeze process supported by a back side rod-locked pneumatic clamp cylinder. Collars are fed and loaded onto a swage die retaining pin, and swaging is performed through ball screw mechanical squeeze. Offset and straight collar tools allow the machine to access 99.9% of fasteners in 3/16″, ¼″ and 5/16″ diameters. Collar stripping forces are resolved using a dynamic ram inertial technique that reduces the pull on the work piece. Titanium TN nuts are fed and loaded into a socket with a retaining spring, and installed on Hi-Loks Hi-Lok with a Bosch right angle nut runner.
Journal Article

Automated Metrology Solution to Reduce Downtime and De-Skill Tooling Recertification

2012-09-10
2012-01-1869
Wing and fuselage aircraft structures require large precise tools for assembly. These large jigs require periodic re-certification to validate jig accuracy, yet metrology tasks involved may take the tool out of service for a week or more and typically require highly specialized personnel. Increasing the time between re-certifications adds the risk of making out-of-tolerance assemblies. How can we reduce jig re-certification down time without increasing the risk of using out-of-tolerance tooling? An alternative, successfully tested in a prototype tool, is to bring automated metrology tools to bear. Specifically, laser tracker measurements can be automated through a combination of off-the-shelf & custom software, careful line-of-sight planning, and permanent embedded targets. Retro-reflectors are placed at critical points throughout the jig. Inaccessible (out of reach) tool areas are addressed through the use of low cost, permanent, shielded repeatability targets.
Journal Article

Automatic Bolt Feeding on a Multifunction Flextrack

2011-10-18
2011-01-2773
One of the largest advancements in the use of the Flextrack technology is the addition of automated fastener installation on the Multifunction Flextrack made by Electroimpact. The new Flextrack installs SSTF (Single Sided Temporary Fasteners) into the holes it drills without removing clamp-up force from the workpiece. This is the first Flextrack to drill and install fasteners and its functionality goes beyond even these functions. The fasteners, SSTF bolts, are increasingly replacing more cumbersome and manual tools for temporary fastening of aerospace components during assembly. They provide doweling, clamp-up, and feature a compact head to facilitate machine installation. The new Multifunction Flextrack carries the bolts on the machine head as opposed to being fed through a feed tube. A Bolt Cartridge System carries up to 80 bolts onboard the Flextrack and the Cartridges can be quick changed for use with several different diameters.
Technical Paper

Automatic Feeding of Temporary Fasteners in Confined Spaces

2010-09-28
2010-01-1879
Single Sided Slave Fasteners (SSSF) or Single Sided Temporary Fasteners (SSTF) are increasingly replacing more cumbersome and manual tools for temporary doweling and clamping of aerospace components during assembly. Their ability to clamp provide doweling and clamping reduce the amount of tooling required. Due to their low profile and blind (one-sided) capability, the key benefit of this new technology is the ability to install these fasteners with automated machines. Electroimpact has developed machines to feed primarily SSTF bolts made application-specific by Centrix LLC [ 1 ]. The application discussed in this paper presented problems of confined spaces where a variety of fasteners were required to be fed automatically. To address this, Electroimpact developed new Bolt Injector and Bolt Inserter technology to feed multiple diameters of SSTF bolts in a very small package. Application-specific SSTF were designed such that multiple diameters could be fed through one feed tube.
Journal Article

Automatic Temporary Fastener Installation System for Wingbox Assembly

2016-09-27
2016-01-2085
The automation cycle time of wing assembly can be shortened by the automated installation of single-sided temporary fasteners to provide temporary part clamping and doweling during panel drilling. Feeding these fasteners poses problems due to their complexity in design and overall heavy weight. In the past, Electroimpact has remotely fed these fasteners by blowing them through pneumatic tubing. This technique has resulted in occasional damage to fasteners during delivery and a complex feed system that requires frequent maintenance. Due to these issues, Electroimpact has developed a new fully automated single-sided temporary fastening system for installation of the LISI Clampberry fasteners in wing panels for the C919 wing factory in Yanliang, China. The feed system stores fasteners in gravity-fed cartridges on the end effector near the point of installation.
Technical Paper

Automatically Feeding and Installing Single Side Slave Fasteners

2010-09-28
2010-01-1842
The use of two-piece temporary fasteners is not an option on some build methodologies, processes, or techniques because of limited accessibility. To solve this problem the use of Single Side Slave fasteners (SSSF) were used. With the development of the SSSF, new process tools also needed to be developed to automatically feed and install these fasteners. This paper will cover the development of the process tools used to feed and install SSSF. The tools were designed to automatically insert and torque 1/4\mi - 5/8\mi SSSFs. This paper will cover both the development of the Bolt injector and Bolt inserter.
Technical Paper

Case Study on the Challenges and Responses of a Large Turnkey Assembly Line for the C919 Wing

2020-03-10
2020-01-0010
Design and production of an assembly system for a major aircraft component is a complex undertaking, which demands a large-scale system view. Electroimpact has completed a turnkey assembly line for producing the wing, flap, and aileron structures for the COMAC C919 aircraft in Xi’an, China. The project scope includes assembly process design, material handling design, equipment design, manufacture, installation, and first article production support. Inputs to the assembly line are individual component parts and small subassemblies. The assembly line output is a structurally completed set of wing box, flaps, and ailerons, for delivery to the Final Assembly Line in Shanghai. There is a trend toward defining an assembly line procurement contract by production capacity, versus a list of components, which implies that an equipment supplier must become an owner of production processes.
Journal Article

Collaborative Robotic Fastening Using Stereo Machine Vision

2019-03-19
2019-01-1374
With typically over 2.3 million parts, attached with over 3 million fasteners, it may be surprising to learn that approximately two out of every three fasteners on a twin aisle aircraft are fastened by hand. In addition the fasteners are often installed in locations designed for strength and not necessarily ergonomics. These facts lead to vast opportunities to automate this tedious and repetitive task. The solution outlined in this paper utilizes the latest machine vision and robotics techniques to solve these unique challenges. Stereo machine vision techniques find the fastener on the interior of an aerospace structure and calculate the 6DOF (Degrees of Freedom) location in less than 500ms. Once the fastener is located, sealed, and inspected for bead width and gaps, a nut or collar is then installed. Force feedback capabilities of a collaborative robot are used to prevent part damage and ensure the nut or collar are properly located on the fastener.
Technical Paper

Electromagnetic Bolt Inserter

2011-10-18
2011-01-2775
Interference bolts are widely used in aircraft assembly. Electroimpact has used its Low voltage Electromagnetic Riveter (LVER) technology to automatically swage collars on these bolts. The bolts are installed using two process tools, a percussive bolt inserter and the EMR. The bolt inserter inserts the bolt and the EMR swages the collar. This increased productivity over manual installation, but there was still production time to be saved. The Electromagnetic Bolt Inserter (EMB) was designed to increase production rate even more when installing bolts and swaging a collar onto the bolt. The EMB combines the great benefits of Electroimpact's Low Voltage Electromagnetic riveting technology with a bolt inserter.
Technical Paper

Fully Automated Off-Line Cartridge Filling Station

2017-09-19
2017-01-2100
A fully automated off-line cartridge filling station has been commissioned to support the new Boeing SAL production cell. The filing station uses automated fastener feed technology that is typically found on the machines themselves. Incorporating this technology off-line in place of the traditional manual handling processes extends the benefits of automation beyond the main manufacturing cell. A single operator is able to keep up with the demand of eight production fastening machines while maintaining the highest levels of accuracy and quality. Additional benefits to this application of automation include reduction of the operators exposure to risks associated with manual handling and repetitive tasks.
Technical Paper

Fully Automated Robotic Tool Change

2015-09-15
2015-01-2508
An improved aircraft assembly line incorporates fully automated robotic tool change. Ten machine tools, each with two onboard 6-axis robots, drill and fasten airplane structural components. The robots change 100% of the process tooling (drill bits, bolt anvils, hole probes, and nosepieces) to allow seamless transition across the entire range of hole and fastener sizes (3/16″-7/16″). To support required rate, total tool change time (including automatic calibration) is less than 80 seconds. This paper describes the robots and their end effector hardware, reliability testing, and simulations for both mechanical clearance and cycle time estimation.
Technical Paper

Gantry Horizontal Slug Riveting System

2024-03-05
2024-01-1924
Previously given Paper 09ATC-0232 delivered at the SAE Aerotech conference in Seattle in 2009 reports on the E6000 machine installing slug rivets with the EMR. Paper 2015-01-2491given at the SAE conference in Seattle in 2015 reports on index head rivets being installed with screw driven squeeze process. This paper reports on the screw driven squeeze process installing unheaded slug rivet which is a more complex process. We also report on improvements to the fixture automation.
Technical Paper

High Accuracy Assembly of Large Aircraft Components Using Coordinated Arm Robots

2016-09-27
2016-01-2133
Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of ±0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact has designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes.
Technical Paper

High Speed Fastener Inspection

2016-09-27
2016-01-2145
Inspection of fasteners prior to installation is critical to the quality of aerospace parts. Fasteners must be inspected for length/grip and diameter at a minimum. Inspecting the fasteners mechanically just prior to insertion can cause additional cycle time loss if inspection cannot be performed at the same time as other operations. To decrease fastener inspection times and to ensure fastener cartridges contain the expected fastener a system was devised to measure the fastener as it travels down the fastener feed tube. This process could be adapted to inspection of fasteners being fed to the process head of a running machine eliminating the mechanical inspection requirement and thus decreasing cycle time.
Technical Paper

Implementation of Long Assembly Drills for 777X Flap Carriers

2024-03-05
2024-01-1923
Large diameter, tightly toleranced fastener patterns are commonplace in aerospace structures. Satisfactory generation of these holes is often challenging and can be further complicated by difficult or obstructed access. Bespoke tooling and drill jigs are typically used in conjunction with power feed units leading to a manual, inflexible, and expensive manufacturing process. For 777X flap production, Boeing and Electroimpact collaborated to create a novel, automated solution to generate the fastener holes for the main carrier fitting attachment pattern. Existing robotic automation used for skin to substructure assembly was modified to utilize extended length (up to 635mm), bearing-supported drill bar sub-assemblies. These Long Assembly Drills (LADs) had to be easily attached and detached by one operator, interface with the existing spindle(s), supply cutting lubricant, extract swarf on demand, and include a means for automatically locating datum features.
Technical Paper

Improved Briles Rivet Forming Using High-Speed Force Feedback and Improved Die Geometry

2019-03-19
2019-01-1377
Electroimpact and Kawasaki Heavy Industries (KHI) have produced a new riveting process for the forming of Briles type rivets in Boeing 777 and 777X fuselage assemblies. The Briles rivet is typically used for fuselage assembly and is unique in that it has a self-sealing head. Unlike conventional headed rivets such as the NAS1079, this fastener does not require aircraft sealant under the head to be fluid tight. This unique fastener makes for a difficult fastening process due to the fact that interference must be maintained between the hole and fastener shank, as well as along the sides of the fastener head. Common issues with the formed fasteners include gapping under the fastener head and along the shank of the fastener. Electroimpact has employed a host of different technologies to combat these issues with Briles fastening. First, Electroimpact’s patented “Air Gap” system allows the machine to confirm that the head of the rivet is fully seated in the countersink prior to forming.
Journal Article

In-Process Hole and Fastener Inspection Using a High-Accuracy Laser Sensor

2020-03-10
2020-01-0015
Electroimpact has produced a new in-process inspection system for use on drilling and fastening systems. The system uses a high-accuracy, non-contact, laser system to measure the flushness of installed fasteners. The system is also capable of measuring part normality and providing feedback to the machine for correction. One drawback to many automatic inspection systems is measurement error. Many sources of measurement error exist in a production environment, including drilling chips, lubrication, and fastener head markings. Electroimpact’s latest system can create a visualization of the measured fastener for the operator to interpret. This allows the operator to determine the cause of a failed measurement, thus reducing machine downtime due to false negatives. Electroimpact created a custom C# WPF application that queries the point-cloud data and analyzes the raw data. A custom “circle Hough transform” scoring algorithm is used to find the center of the nosepiece (pressure foot).
X