Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2D Mapping and Quantification of the In-Cylinder Air/Fuel-Ratio in a GDI Engine by Means of LIF and Comparison to Simultaneous Results from 1D Raman Measurements

2001-05-07
2001-01-1977
The optimization of the vaporization and mixture formation process is of great importance for the development of modern gasoline direct injection (GDI) engines, because it influences the subsequent processes of the ignition, combustion and pollutant formation significantly. In consequence, the subject of this work was the development of a measurement technique based on the laser induced exciplex fluorescence (LIF), which allows the two dimensional visualization and quantification of the in-cylinder air/fuel ratio. A tracer concept consisting of benzene and triethylamine dissolved in a non-fluorescent base fuel has been used. The calibration of the equivalence ratio proportional LIF-signal was performed directly inside the engine, at a well known mixture composition, immediately before the direct injection measurements were started.
Technical Paper

A Computational Aeroacoustic Study of Windshield Wiper Influence on Passenger Vehicle Greenhouse Windnoise

2014-06-30
2014-01-2051
This paper presents an approach to numerically simulate greenhouse windnoise. The term “greenhouse windnoise” here describes the sound transferred to the interior through the glass panels of a series vehicle. Different panels, e.g. the windshield or sideglass, are contributing to the overall noise level. Attached parts as mirrors or wipers are affecting the flow around the vehicle and thus the pressure fluctuations which are acting as loads onto the panels. Especially the wiper influence and the effect of different wiper positions onto the windshield contribution is examined and set in context with the overall noise levels and other contributors. In addition, the effect of different flow yaw angles on the windnoise level in general and the wiper contributions in particular are demonstrated. As computational aeroacoustics requires accurate, highly resolved simulation of transient and compressible flow, a Lattice-Boltzmann approach is used.
Technical Paper

A Coupled Approach to Truck Drum Brake Cooling

2015-09-29
2015-01-2901
Trucks can carry heavy load and when applying the brakes during for example a mountain downhill or for an abrupt stop, the brake temperatures can rise significantly. Elevated temperatures in the drum brake region can reduce the braking efficiency or can even cause the brake system to fail, catch fire or even break. It therefore needs to be designed such to be able to transfer the heat out of its system by convection, conduction and/or radiation. All three heat transfer modes play an important role since the drum brakes of trucks are not much exposed to external airflow, a significant difference from disk brakes of passenger cars analyzed in previous studies. This makes it a complex heat transfer problem which is not easy to understand. Numerical methods provide insight by visualization of the different heat transfer modes. Presented is a numerical method that simulates the transient heat transfer of a truck drum brake system cooldown at constant driving speed.
Technical Paper

A Modular Methodology for Complete Vehicle Thermal Management Simulations

2022-08-30
2022-01-5064
Vehicle thermal management (VTM) simulations are becoming increasingly important in the development phase of a vehicle. These simulations help in predicting the thermal profiles of critical components over a drive cycle. They are usually done using two methodologies: (1) Solving every aspect of the heat transfer, i.e., convection, radiation, and conduction, in a single solver (Conjugate Heat Transfer) or (2) Simulating convection using a fluid solver and computing the other two mechanisms using a separate thermal solver (Co-simulation). The first method is usually computationally intensive, while the second one isn’t. This is because Co-simulation reduces the load of simulating all heat transfer mechanisms in a single code. This is one of the reasons why the Co-simulation method is widely used in the automotive industry. Traditionally, the methods developed for Co-simulation processes are load case specific.
Technical Paper

A New Approach to Model the Fan in Vehicle Thermal Management Simulations

2019-02-25
2019-01-5016
Vehicle thermal management (VTM) simulations constitute an important step in the early development phase of a vehicle. They help in predicting the temperature profiles of critical components over a drive cycle and identify components which are exceeding temperature design limits. Parts with the highest temperatures in a vehicle with an internal combustion engine are concentrated in the engine bay area. As packaging constraints grow tighter, the components in the engine bay are packed closer together. This makes the thermal protection in the engine bay even more crucial. The fan influences the airflow into the engine bay and plays an important role in deciding flow distribution in this region. This makes modelling of the fan an important aspect of VTM simulations. The challenge associated with modelling the fan is the accurate simulation of the rotation imparted by the fan to the incoming flow. Currently, two modelling approaches are prevalent in the industry.
Technical Paper

A New Method for the Investigation of Unburned Oil Emissions in the Raw Exhaust of SI Engines

1998-10-19
982438
The study of oil emission is of essential interest for the engine development of modern cars, as well as for the understanding of hydrocarbon emissions especially during cold start conditions. A laser mass spectrometer has been used to measure single aromatic hydrocarbons in unconditioned exhaust gas of a H2-fueled engine at stationary and transient motor operation. These compounds represent unburned oil constituents. The measurements were accompanied by FID and GC-FID measurements of hydrocarbons which represent the burned oil constituents. The total oil consumption has been determined by measuring the oil sampled by freezing and weighing. It has been concluded that only 10 % of the oil consumption via exhaust gas has burned in the cylinders. A correlation of the emission of single oil-based components at ppb level detected with the laser mass spectrometer to the total motor oil emission has been found.
Technical Paper

A Physical-Based Approach for Modeling the Influence of Different Operating Parameters on the Dependency of External EGR Rate and Indicated Efficiency

2018-09-10
2018-01-1736
External Exhaust Gas Recirculation (EGR) provides an opportunity to increase the efficiency of turbocharged spark-ignition engines. Of the competing technologies and configurations, Low-Pressure EGR (LP-EGR) is the most challenging in terms of its dynamic behavior. Only some of the stationary feasible potential can be used during dynamic engine operation. To guarantee fuel consumption-optimized engine operation with no instabilities, a load point-dependent limitation of the EGR rate or alternatively an adaptation of the operating point to the actual EGR rate is crucial. For this purpose, a precise knowledge of efficiency and combustion variance is necessary. Since the operating state includes the actual EGR rate, it has an additional dimension, which usually results in an immense measuring effort.
Technical Paper

A Virtual Residual Gas Sensor to Enable Modeling of the Air Charge

2016-04-05
2016-01-0626
Air charge calibration of turbocharged SI gasoline engines with both variable inlet valve lift and variable inlet and exhaust valve opening angle has to be very accurate and needs a high number of measurements. In particular, the modeling of the transition area from unthrottled, inlet valve controlled resp. throttled mode to turbocharged mode, suffers from small number of measurements (e.g. when applying Design of Experiments (DoE)). This is due to the strong impact of residual gas respectively scavenging dominating locally in this area. In this article, a virtual residual gas sensor in order to enable black-box-modeling of the air charge is presented. The sensor is a multilayer perceptron artificial neural network. Amongst others, the physically calculated air mass is used as training data for the artificial neural network.
Journal Article

Analysis of the Piston Group Friction in a Single-Cylinder Gasoline Engine When Operated with Synthetic Fuel DMC/MeFo

2022-03-29
2022-01-0485
Synthetic fuels for internal combustion engines offer CO2-neutral mobility if produced in a closed carbon cycle using renewable energies. C1-based synthetic fuels can offer high knock resistance as well as soot free combustion due to their molecular structure containing oxygen and no direct C-C bonds. Such fuels as, for example, dimethyl carbonate (DMC) and methyl formate (MeFo) have great potential to replace gasoline in spark-ignition (SI) engines. In this study, a mixture of 65% DMC and 35% MeFo (C65F35) was used in a single-cylinder research engine to determine friction losses in the piston group using the floating-liner method. The results were benchmarked against gasoline (G100). Compared to gasoline, the density of C65F35 is almost 40% higher, but its mass-based lower heating value (LHV) is 2.8 times lower. Hence, more fuel must be injected to reach the same engine load as in a conventional gasoline engine, leading to an increased cooling effect.
Technical Paper

Automotive Cabin Infotainment System Thermal Management

2015-04-14
2015-01-0328
The level of infotainment in today's vehicles and the customer expectation of the functionality imply a significant effort is required on thermal management of the systems, to guarantee their full operation under all operating conditions. The worst case thermal conditions the system will get exposed to are caused by solar loading on the cabin or heat up as a result of cabin heating. Simulation of a solar load driven case will be discussed in this paper. The long soak conditions during these tests result in the modelling requirement for long natural convection periods. This is creating a challenge for the conventional CFD simulations in turnaround time. New simulation methodology has resulted in significant speed up enabling these fully transient simulations in a reasonable turnaround time to enable programme support. A two phase approach to simulating this problem is proposed in this paper.
Technical Paper

Cooling Airflow Simulation for Passenger Cars using Detailed Underhood Geometry

2006-10-31
2006-01-3478
Air flow in the underhood area is the primary source of engine cooling. A quick look at the vehicle underhood reveals exceptionally complex geometry. In addition to the engine, there are fans, radiator, condenser, other heat exchangers and components. The air flow needs to have adequate access to all relevant parts that require cooling. Due to complex geometry, the task to ensure sufficient air cooling is not a simple one. The air flow entering from the front grille is affected by many components on its path through the underhood. Even small geometry details affect the flow direction and can easily cause recirculation regions which reduce the cooling efficiency. Therefore, air cooling flow analysis requires detailed treatment of the underhood geometry and at the same time accurate air flow modeling. Recent advances in the lattice-Boltzmann equation (LBE) modeling are allowing both.
Technical Paper

Digital Aeroacoustics Design Method of Climate Systems for Improved Cabin Comfort

2017-06-05
2017-01-1787
Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
Technical Paper

Direct Aeroacoustics Predictions of Automotive HVAC Systems based on Lattice Boltzmann Method

2018-06-13
2018-01-1520
The demand for low noise level in vehicle cabin continues to rise lately. In particular, noise generated by eco-friendly cars such as hybrid and electric ones tends to become lower and lower. In this market environment, the noise contributions caused by HVAC systems are also increasing. Therefore, it becomes increasingly important to accurately predict noise generated by HVAC systems and analyze the noise sources and resolve the noise issue. In this study, direct acoustics prediction approach based on Lattice Boltzmann Method is applied to predict the flow-induced noise from HVAC systems including blower and ducts and find noise sources. In order to validate the simulation result, acoustics measurements are performed on HVAC systems in an anechoic room and the results are compared to each other. A new technique is applied to finding a noise source for a specific frequency and shows improved noise level through modifying the geometry related to noise sources detected by the simulation.
Technical Paper

ECU Integrated DSP Based Measurement System for Combustion Analysis

2000-03-06
2000-01-0547
For development of new engines a ‘general purpose ECU’ for spark ignition engines with up to 12 cylinders has been developed. As part of this ECU a DSP (Digital Signal Processor)-based measurement unit for high frequency combustion analysis has been integrated. In this paper, details about this signal processing platform are given. The DSP-unit has 24 analog input channels. 12 channels are used for cylinder pressure measurement; the other 12 channels are general purpose ones. For example, they can be used for ionic current analysis. Additional digital inputs allow measurement of crank speed and crank speed variations. This is an important topic for misfire detection as part of the OBD regulations.
Technical Paper

Electrically Heated Catalytic Converter (EHC) in the BMW ALPINA B12 5.7 Switch-Tronic

1996-02-01
960349
The production of the BMW ALPINA B12 5.7 with Switch-Tronic transmission provides the markets of Europe and Japan with an exclusive, luxury-orientated, high performance limited series limousine. This is the first vehicle worldwide to be fitted with the progressive exhaust gas aftertreatment technology known as the Electrically Heated Catalyst (EHC), in which the effectiveness of the power utilized is increased significantly by an alternating heating process for both catalytic converters. Only since this achievement has the implementation of the EHC been viable without extensive modification to the battery and alternator. With this exhaust gas aftertreatment concept, the emissions of this high performance vehicle will fall to less than half the maximum permissible for compliance with 1996 emission standards.
Technical Paper

Energy Consumption of Electro-Hydraulic Steering Systems

2005-04-11
2005-01-1262
The reduction of fuel consumption in vehicles remains an important target in vehicle development to meet the carbon dioxide emission reduction target. One of the significant consumers of energy in a vehicle is the hydraulic power-assisted steering system (HPS) powered by the engine belt drive. To reduce the energy consumption an electric motor can be used to drive the pump (electro-hydraulic power steering or EHPS). In this work a simulation model was developed and validated to model the energy consumption of the whole steering system. This includes an advanced friction model for the steering rack, a physically modeled steering valve, the hydraulic pump and the electric motor with the control unit. The model is used to investigate the influence of various parameters on the energy consumption for different road situations. The results identified the important parameters influencing the power consumption and showed the potential to reduce the power consumption of the system.
Technical Paper

Engine Room Lay-out Study for Fuel Efficiency and Thermal Performance

2012-04-16
2012-01-0639
Systematic numerical simulations were performed for the improvement of fuel efficiency and thermal performance of a compact size passenger vehicle. Both aerodynamic and thermal aspects were considered concurrently. For the sake of systematic evaluation, our study was conducted employing various design changes in multiple steps: 1) analysis of the baseline design; 2) elimination of the engine room components; 3) modification of the engine room component layout; 4) modification of the aerodynamic components (such as under body cover and cooling ducts). The vehicle performance characteristics corresponding to different design options were analyzed in terms of aerodynamic coefficient, engine coolant temperature, and surface temperatures of thermally critical components such as battery and exhaust manifold. Finally optimal design modification solutions for better vehicle performance were proposed.
Technical Paper

Equations and Methods for Testing Hydrogen Fuel Consumption using Exhaust Emissions

2008-04-14
2008-01-1036
Although hydrogen ICE engines have existed in one sort or another for many years, the testing of fuel consumption by way of exhaust emissions is not yet a proven method. The current consumption method for gasoline- and diesel-fueled vehicles is called the Carbon-Balance method, and it works by testing the vehicle exhaust for all carbon-containing components. Through conservation of mass, the carbon that comes out as exhaust must have gone in as fuel. Just like the Carbon-Balance method for gas and diesel engines, the new Hydrogen-Balance equation works on the principle that what goes into the engine must come out as exhaust components. This allows for fuel consumption measurements without direct contact with the fuel. This means increased accuracy and simplicity. This new method requires some modifications to the testing procedures and CVS (Constant Volume Sampling) system.
Technical Paper

Evolution of Passenger Car Emission in Germany - A Comparative Assessment of Two Forecast Models

1993-11-01
931988
Two models for the forecast of road traffic emissions, independently developed in parallel, are comparatively presented and assessed: EPROG developed by BMW and enlarged by VDA for a national application (Germany) and FOREMOVE, developed for application on European Community scale. The analysis of the methodological character of the two algorithms proves that the models are fundamentally similar with regard to the basic calculation schemes used for the emissions. The same holds true as far as the significant dependencies of the emission factors, and the recognition and incorporation of the fundamental framework referring to traffic important parameters (speeds, mileage and mileage distribution etc) are concerned.
Journal Article

Exhaust and Muffler Aeroacoustics Predictions using Lattice Boltzmann Method

2015-06-15
2015-01-2314
Exhaust and muffler noise is a challenging problem in the transport industry. While the main purpose of the system is to reduce the intensity of the acoustic pulses originating from the engine exhaust valves, the back pressure induced by these systems must be kept to a minimum to guarantee maximum performance of the engine. Emitted noise levels have to ensure comfort of the passengers and must respect community noise regulations. In addition, the exhaust noise plays an important role in the brand image of vehicles, especially with sports car where it must be tuned to be “musical”. However, to achieve such performances, muffler and exhaust designs have become quite complex, often leading to the rise of undesired self-induced noise. Traditional purely acoustic solvers, like Boundary Element Methods (BEM), have been applied quite successfully to achieve the required acoustic tuning.
X