Refine Your Search

Topic

Author

Search Results

Journal Article

A Case Study on Clean Side Duct Radiated Shell Noise Prediction

2017-03-28
2017-01-0444
Engine air induction shell noise is a structure borne noise that radiates from the surface of the air induction system. The noise is driven by pulsating engine induction air and is perceived as annoying by vehicle passengers. The problem is aggravated by the vehicle design demands for low weight components packaged in an increasingly tight under hood environment. Shell noise problems are often not discovered until production intent parts are available and tested on the vehicle. Part changes are often necessary which threatens program timing. Shell noise should be analyzed in the air induction system design phase and a good shell noise analytical process and targets must be defined. Several air induction clean side ducts are selected for this study. The ducts shell noise is assessed in terms of material strength and structural stiffness. A measurement process is developed to evaluate shell noise of the air induction components. Noise levels are measured inside of the clean side ducts.
Technical Paper

A Case Study on Reducing the Fuel Pulse Noise from Gasoline Engine Injectors

2020-04-14
2020-01-1276
There are many noise sources from the vehicle fuel system to generate noise inside a vehicle. Among them, the pressure pulsation due to the rapid opening and closing of gasoline engine injectors can cause undesirable fuel pulse noise. As the pressure pulsation propagates in the fuel supply line toward to rear end of the vehicle, the pressure energy is transferred from fuel lines to the vehicle underbody through clips and into the passenger compartment. It is crucial to attenuate the pressure pulsation inside the fuel line to reduce the fuel pulse noise. In this paper, a case study on developing an effective countermeasure to reduce the objectionable fuel pulse noise of a V8 gasoline injection system at engine idle condition is presented. First, the interior noise of a prototype vehicle was tested and the objectionable fuel pulse noise is exhibited. The problem frequency ranges of the pulse noise were identified.
Technical Paper

A DFSS Approach to Optimize the Second Row Floor Duct Using Parametric Modelling

2017-03-28
2017-01-0176
The main function of mobile air conditioning system in a vehicle is to provide the thermal comfort to the occupants sitting inside the vehicle at all environmental conditions. The function of ducts is to get the sufficient airflow from the HVAC system and distribute the airflow evenly throughout the cabin. In this paper, the focus is to optimize the rear passenger floor duct system to meet the target requirements through design for six sigma (DFSS) methodology. Computational fluid dynamics analysis (CFD) has been used extensively to optimize system performance and shorten the product development time. In this methodology, a parametric modeling of floor duct design using the factors such as crossectional area, duct length, insulation type, insulation thickness and thickness of duct were created using CATIA. L12 orthogonal design array matrix has been created and the 3D CFD analysis has been carried out individually to check the velocity and temperature.
Journal Article

A New Approach to Understanding Planetary Gear Train Efficiency and Powerflow

2020-04-14
2020-01-0432
Understanding planetary gear efficiency is more involved than understanding efficiency of external gears because of the recirculating power that is inherent in planetary gear operation. There have been several publications going back several decades on this topic. However, many of these publications are mathematical in their approach and tend to be overlooked by practicing engineers. This paper brings a new, more visual and more intuitive approach to the problem. It uses lever diagrams, which have been a standard tool in the transmission engineer’s arsenal for almost four decades, to visualize the power flow and develop analytical expressions for the efficiency of simple and compound planetary gears. It then extends the approach to more complex gear trains.
Technical Paper

A Novel DoE based Front-End Airflow Target Setting Approach for Optimum HVAC Cool Down Performance

2018-04-03
2018-01-0786
The front-end air flow conditions have a substantial impact on the cool down performance of a vehicle Heating, Ventilation and Air-Conditioning (HVAC) system. The performance of a mobile HVAC system is analyzed by conducting tests on the vehicle in a drive cell, subjecting it to different drive cycles. This now can be done virtually using system level simulation or one-dimensional (1D) tools. Target values for condenser air inlet velocity and temperature for these HVAC performance focused drive cycles needs to be established during the development phase to meet the cool down functional objectives of the vehicle. Thus, in the early stages of development, 1D tools play a major role. Condenser air flow should be sufficient and the temperature should be as low as possible at different vehicle operating conditions to have good air-conditioning (AC) performance.
Technical Paper

A Novel Kalman Filter Based Road Grade Estimation Method

2020-04-14
2020-01-0563
This paper presents a novel Kalman filter based road grade estimation method using measurements from an accelerometer, a gyroscope and a velocity sensor. The accelerometer measures the longitudinal proper acceleration of the vehicle, and the accelerometer measurement is almost drift free but it is heavily corrupted by the accelerometer noise. The gyroscope measures the pitch rate of the vehicle, and the gyroscope measurement is quite clean but it is substantially disturbed by the gyroscope bias. The velocity sensor measures the longitudinal velocity of the vehicle, and the velocity sensor measurement is also considerably corrupted by the measurement noise. The developed Kalman filter based estimation method uses the models of the sensors and their outputs, and fuses the sensor measurements to optimally estimate the road grade. The simulation results show that the developed method is very effective in producing an accurate road grade estimate.
Technical Paper

A Qualitative Comparison of the Macroscopic Spray Characteristics of Gasoline Mixtures and their Multi-Component Surrogates Using a Rapid Compression Machine

2021-04-06
2021-01-0558
Rapid Compression Machines (RCM) offer the ability to easily change the compression ratio and the pressure/mixture composition/temperature to gather ignition delay data at various engine relevant conditions. Therefore, RCMs with optical access to the combustion chamber can provide an effective way to analyze macroscopic spray characteristics needed to understand the spray injection process and for spray model development, validation and calibration at conditions that are suitable for engines. Fuel surrogates can help control fuel parameters, develop models for spray and combustion, and perform laser diagnostics with known fluorescence characteristics. This study quantifies and evaluates the macroscopic spray characteristics of multicomponent gasoline surrogates in comparison to their gasoline counterparts, under gasoline direct injection (GDI) engine conditions.
Technical Paper

A Robust Cargo Box Structure Development Using DFSS Methodology

2020-04-14
2020-01-0601
A cargo box is a key structure in a pickup truck which is used to hold various items. Therefore, a cargo box must be durable and robust under different ballast conditions when subjected to road load inputs. This paper discusses a Design for Six Sigma (DFSS) approach to improve the durability of cargo box panel in its early development phase. Traditional methods and best practices resulted in multiple iterations without an obvious solution. Hence, DFSS tools were proposed to find a robust and optimum solution. Key control factors/design parameters were identified, and L18 Orthogonal Array was chosen to optimize design using CAE tools. The optimum design selected was the one with the minimum stress level and the least stress variation. This design was confirmed to have significant improvement and robustness compared to the initial design. DFSS identified load paths which helped teams finally come up with integrated shear plate to resolve the durability concern.
Technical Paper

A Simulation-Based Approach to Incorporate Uncertainty in Reliability Growth Planning (RGP)

2020-04-14
2020-01-0742
The development of complex engineering systems often encounters various challenges in terms of meeting New Product Development (NPD) assigned budget, launch time, and system performance goals. Most of the NPD processes have been experiencing challenges to meet these goals within an increasingly competitive global market environment. These challenges become more complicated to manage when the development process is long with different sources of uncertainty. Despite decades of industrial experience and academic research efforts in managing NPD processes, it is observed that designing and developing increasingly complex systems, e.g., automotive, is still subjected to significant cost overrun, schedule delays, and functional issues during early design stages. To provide a Reliability Growth Planning (RGP) model, several inputs are required, e.g., the initial reliability estimation, the reliability goal, test recourses, and the duration of the design or test period.
Technical Paper

A Study of Influence of Suspension on Driveline Torque and Evaluation of Vehicle Anti-Squat/Dive Characteristics Using a Planar Vehicle Dynamics Model

2021-04-06
2021-01-0693
Simplified vehicle dynamics models used to study the driveline durability are typically limited to the longitudinal dynamics and do not account for vertical and pitch dynamics. The influence of suspension on the vehicle ride and handling characteristics is studied extensively in the literature but its impact on the driveline torques is often not considered. In this paper, an effort is made to investigate the influence of suspension compliance on the driveline torque using a planar (longitudinal, pitch and vertical) vehicle dynamics model. An AWD vehicle is studied to understand its impact on the torque levels of both axles (primary and secondary). Subsequently the planar dynamics is explored in the context of anti-squat/anti-dive suspension. The primary focus of the paper is to predict the driveline torque.
Technical Paper

A Study on Robust Air Induction Snorkel Volume Velocity Prediction Using DFSS Approach

2016-04-05
2016-01-0480
The noise radiated from the snorkel of an air induction system (AIS) can be a major noise source to the vehicle interior noise. This noise source is typically quantified as the snorkel volume velocity which is directly related to vehicle interior noise through the vehicle noise transfer function. It is important to predict the snorkel volume velocity robustly at the early design stage for the AIS development. Design For Six Sigma (DFSS) is an engineering approach that supports the new product development process. The IDDOV (Identify-Define-Develop-Optimize-Verify) method is a DFSS approach which can be used for creating innovative, low cost and trouble free products on significant short schedules. In this paper, an IDD project which is one type of DFSS project using IDDOV method is presented on developing a robust simulation process to predict the AIS snorkel volume velocity. First, the IDDOV method is overviewed and the innovative tools in each phase of IDDOV are introduced.
Technical Paper

A Vehicle Level Transient Thermal Analysis of Automotive Fuel Tanks

2020-04-14
2020-01-1342
Maintaining the fuel temperature and fuel system components below certain values is an important design objective. Predicting these temperatures is therefore one of the key parts of the vehicle’s thermal management process. One of the physical processes affecting fuel tank temperature is fuel vaporization, which is controlled by the vapor pressure in the tank, fuel composition and fuel temperature. Models are developed to enable the computation of the fuel temperature, fuel vaporization rate in the tank, fuel temperatures along the fuel supply lines, and follow its path to the charcoal canister and into the engine intake. For diesel fuel systems where a fuel return line is used to return excess fluid back to the fuel tank, an energy balance will be considered to calculate the heat added from the high-pressure pump and vehicle under-hood and underbody.
Technical Paper

Acid Resistant POM for Fuel System Components

2020-04-14
2020-01-0231
Investigation into fuel system warranty has led to the need to develop cost effective, robust materials that are resistant to both fuel and aggressive cleaners. Acetal, chemically known as polyoxymethylene (POM), is the current material that is used universally by OEM’s throughout the fuel system for its excellent performance in fuel and relatively low cost, but lacks resistance to strong acidic solutions. Acid containing wheel cleaning solutions are increasingly being used by customers to clean their aluminum and magnesium wheels. Due to the proximity of the fuel modules to the wheel openings, acidic wheel cleaners chemically attack the POM resulting in cracks. The team worked closely with suppliers in recent years to develop cost effective, acid resistant POM materials that can withstand the stress-cracking at severe acid concentrations and meet the functional requirements.
Technical Paper

Acoustic Performance Analysis of Automotive HVAC Duct Designs Using a Lattice-Boltzmann Based Method and Correlation with Hemi-Anechoic Chamber

2020-04-14
2020-01-1263
Acoustic comfort of automotive cabins has progressively become one of the key attributes of passenger comfort within vehicle design. Wind noise and the heating, ventilation, and air conditioning (HVAC) system noise are two of the key contributors to noise levels heard inside the car. The increasing prevalence of hybrid technologies and electrification has an associated reduction in powertrain noise levels. As such, the industry has seen an increasing focus on understanding and minimizing HVAC noise, as it is a main source of noise in the cabin particularly when the vehicle is stationary. The complex turbulent flow path through the ducts, combined with acoustic resonances can potentially lead to significant noise generation, both broadband and tonal.
Technical Paper

Adapting Design for Six Sigma (DFSS) Methodology for Diesel Lean NOx Trap (LNT) Catalyst Screening

2016-04-05
2016-01-0953
In order to meet LEV III, EURO 6C and Beijing 6 emission levels, Original Equipment Manufacturers (OEMs) can potentially implement unique aftertreatment systems solutions which meet the varying legislated requirements. The availability of various washcoat substrates and PGM loading and ratio options, make selection of an optimum catalyst system challenging, time consuming and costly. Design for Six Sigma (DFSS) methodologies have been used in industry since the 1990s. One of the earliest applications was at Motorola where the methodology was applied to the design and production of a paging device which Consumer Reports called “virtually defect-proof”.[1] Since then, the methodology has evolved to not only encapsulate complicated “Variation Optimization” but also “Design Optimization” where multiple factors are in play. In this study, attempts are made to adapt the DFSS concept and methodology to identify and optimize a catalyst for diesel applications.
Technical Paper

Air Induction Impact on Turbocharger Noise and Thermodynamic Performance

2020-04-14
2020-01-0426
The trend to simultaneously improve fuel economy and engine performance has led to industry growth of turbocharged engines and as a result, the need to address their undesirable airborne noise attributes. This presents some unique engineering challenges as higher customer expectations for Noise Vibration Harshness (NVH), and other vehicle-level attributes increase over time. Turbocharged engines possess higher frequency noise content compared to naturally aspirated engines. Therefore, as an outcome, whoosh noise in the Air Induction System (AIS) during tip in conditions is an undesirable attribute that requires high frequency attenuation enablers. The traditional method for attenuation of this type of noise has been to use resonators which adds cost, weight and requires packaging space that is often at a premium in the under-hood environment.
Technical Paper

Application of DFSS Taguchi Method to Design Robust Shock Tower

2021-04-06
2021-01-0234
Design for Six Sigma (DFSS) is an essential tool and methodology for innovation projects to improve the product design/process and performance. This paper aims to present an application of the DFSS Taguchi Method for an automotive/vehicle component. High-Pressure Vacuum Assist Die Casting (HPVADC) technology is used to make Cast Aluminum Front Shock Tower. During the vehicle life, Shock Tower transfers the road high impact loads from the shock absorber to the body structure. Proving Ground (PG) and washout loads are often used to assess part strength, durability life and robustness. The initial design was not meeting the strength requirement for abusive washout loads. The project identified eight parameters (control factors) to study and to optimize the initial design. Simulation results confirmed that all eight selected control factors affect the part design and could be used to improve the Shock Tower's strength and performance.
Journal Article

Assessing the Impact of Lubricant and Fuel Composition on LSPI and Emissions in a Turbocharged Gasoline Direct Injection Engine

2020-04-14
2020-01-0610
Downsized turbocharged gasoline direct injection (TGDI) engines with high specific power and torque can enable reduced fuel consumption in passenger vehicles while maintaining or even improving on the performance of larger naturally aspirated engines. However, high specific torque levels, especially at low speeds, can lead to abnormal combustion phenomena such as knock or Low-Speed Pre-Ignition (LSPI). LSPI, in particular, can limit further downsizing due to resulting and potentially damaging mega-knock events. Herein, we characterize the impacts of lubricant and fuel composition on LSPI frequency in a TGDI engine while specifically exploring the correlation between fuel composition, particulate emissions, and LSPI events. Our research shows that: (1) oil composition has a strong impact on LSPI frequency and that LSPI frequency can be reduced through a carefully focused approach to lubricant formulation.
Journal Article

Automobile Powertrain Sound Quality Development Using a Design for Six Sigma (DFSS) Approach

2015-06-15
2015-01-2336
Automotive companies are studying to add extra value in their vehicles by enhancing powertrain sound quality. The objective is to create a brand sound that is unique and preferred by their customers since quietness is not always the most desired characteristic, especially for high-performance products. This paper describes the process of developing a brand powertrain sound for a high-performance vehicle using the DFSS methodology. Initially the customer's preferred sound was identified and analyzed. This was achieved by subjective evaluations through voice-of-customer clinics using vehicles of similar specifications. Objective data were acquired during several driving conditions. In order for the design process to be effective, it is very important to understand the relationship between subjective results and physical quantities of sound. Several sound quality metrics were calculated during the data analysis process.
Technical Paper

Automotive Applications Multiaxial Proving Grounds and Road Test Simulator: Durability Prediction Methodology Development and Correlation for Rubber Components

2023-04-11
2023-01-0723
Many chassis and powertrain components in the transportation and automotive industry experience multi-axial cyclic service loading. A thorough load-history leading to durability damage should be considered in the early vehicle production steps. The key feature of rubber fatigue analysis discussed in this study is how to define local critical location strain time history based on nominal and complex load time histories. Material coupon characterization used here is the crack growth approach, based on fracture mechanics parameters. This methodology was utilized and presented for a truck engine mount. Temperature effects are not considered since proving ground (PG) loads are generated under isothermal high temperature and low frequency conditions without high amounts of self-heating.
X