Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Acoustics of Hybrid Vehicles

2010-06-09
2010-01-1402
The technology used in hybrid vehicle concepts is significantly different from conventional vehicle technology with consequences also for the noise and vibration behavior. In conventional vehicles, certain noise phenomena are masked by the engine noise. In situations where the combustion engine is turned off in hybrid vehicle concepts, these noise components can become dominant and annoying. In hybrid concepts, the driving condition is often decoupled from the operation state of the combustion engine, which leads to unusual and unexpected acoustical behavior. New acoustic phenomena such as magnetic noise due to recuperation occur, caused by new components and driving conditions. The analysis of this recuperation noise by means of interior noise simulation shows, that it is not only induced by the powertrain radiation but also by the noise path via the powertrain mounts. The additional degrees of freedom of the hybrid drive train can also be used to improve the vibrational behavior.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion

2008-10-06
2008-01-2404
A broad range of diesel, kerosene, and gasoline-like fuels has been tested in a single-cylinder diesel engine optimized for advanced combustion performance. These fuels were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions, performance, and noise levels. Low-level biofuel blends, both biodiesel (FAME) and ethanol, were included in the fuel set in order to test for short-term advantages or disadvantages. The diesel engine optimized in Part 1 of this study included cumulative engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under conditions of Homogeneous Charge Compression Ignition (HCCI), at least over some portions of the speed and load map.
Journal Article

Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized DI SI Engine

2011-08-30
2011-01-1991
In this study the fuel influence of several bio-fuel candidates on homogeneous engine combustion systems with direct injection is investigated. The results reveal Ethanol and 2-Butanol as the two most knock-resistant fuels. Hence these two fuels enable the highest efficiency improvements versus RON95 fuel ranging from 3.6% - 12.7% for Ethanol as a result of a compression ratio increase of 5 units. Tetrahydro-2-methylfuran has a worse knock resistance and a decreased thermal efficiency due to the required reduction in compression ratio by 1.5 units. The enleanment capability is similar among all fuels thus they pose no improvements for homogeneous lean burn combustion systems despite a significant reduction in NOX emissions for the alcohol fuels as a consequence of lower combustion temperatures.
Technical Paper

Analytical and Empirical Methods for Optimization of Cylinder Liner Bore Distortion

2001-03-05
2001-01-0569
Beside the traditional prediction of stresses and verification by mechanical testing the optimization of cylinder liner bore distortion is one of today's most important topics in crankcase structure development. Low bore distortion opens up potentials for optimizing the piston group. As the piston rings achieve better sealing characteristics in a low deformation cylinder liner, oil consumption and blow-by are reduced. For unchanged oil consumption and blow-by demands, engine friction and subsequently, fuel consumption could be reduced by decreasing the pre-tension of the piston rings. From the acoustical point of view an optimization of piston-slap noise is often based on an optimized bore distortion behavior. Apart from basics to the behavior of liner bore distortion the paper presents advanced analytical and empirical methods for detailed prediction, verification and optimization of bore distortion taking into account the effective engine operation conditions.
Technical Paper

Applying Representative Interactive Flamelets (RIF) with Special Emphasis on Pollutant Formation to Simulate a DI Diesel Engine with Roof-Shaped Combustion Chamber and Tumble Charge Motion

2007-04-16
2007-01-0167
Combustion and pollutant formation in a new recently introduced Common-Rail DI Diesel engine concept with roof-shaped combustion chamber and tumble charge motion are numerically investigated using the Representative Interactive Flamelet concept (RIF). A reference case with a cup shaped piston bowl for full load operating conditions is considered in detail. In addition to the reference case, three more cases are investigated with a variation of start of injection (SOI). A surrogate fuel consisting of n-decane (70% liquid volume fraction) and α-methylnaphthalene (30% liquid volume fraction) is used in the simulation. The underlying complete reaction mechanism comprises 506 elementary reactions and 118 chemical species. Special emphasis is put on pollutant formation, in particular on the formation of NOx, where a new technique based on a three-dimensional transport equation within the flamelet framework is applied.
Technical Paper

Architecture of a Detailed Three Dimensional Piston Ring Model

2011-09-11
2011-24-0159
Piston rings are faced with a broad range of demands like optimal sealing properties, wear properties and reliability. Even more challenging boundary conditions must be met when latest developments in the fields of direct injection as well as the application of bio fuels. This complex variety of piston ring design requirements leads to the need of a comprehensive simulation model in order to support the development in the early design phase prior to testing. The simulation model must be able to provide classical objectives like friction analysis, wear rate and blow-by. Furthermore, it must include an adequate oil consumption model. The objective of this work is to provide such a simulation model that is embedded in the commercial MBS software ‘FEV Virtual Engine’. The MBS model consists of a cranktrain assembly with a rigid piston that contains flexible piston rings.
Technical Paper

Closed Loop Combustion Control - Enabler of Future Refined Engine Performance Regarding Power, Efficiency, Emissions & NVH under Stringent Governmental Regulations

2011-09-11
2011-24-0171
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of the carbon dioxide output in the traffic sector depict substantial requirements for the global automotive industry and especially for the engine manufacturers. From the multiplicity of possible approaches and strategies for clear compliance with these demands, engine internal measures offer a large and, eventually more important, very economical potential. For example, the achievements in fuel injection technology are a measure which in the last years has contributed significantly to a notable reduction of the emissions of the modern DI Diesel engines at favorable fuel efficiency. Besides the application of modern fuel injection technology, the linked combustion control (Closed Loop Combustion Control) opens possibilities for a further optimization of the combustion process.
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

2007-04-16
2007-01-1128
The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.
Technical Paper

Controlled Auto Ignition Combustion Process with an Electromechanical Valve Train

2003-03-03
2003-01-0032
The current discussion about possible limitation of CO2 emissions makes improvement of fuel consumption a central topic for gasoline engine development. Various technological solutions are available to realize this improvement. Concepts featuring direct fuel injection, engine downsizing and unthrottled control of engine load with variable valvetrains are currently considered the most promising ways to achieve this goal. Further concepts that are under development include Controlled Auto Ignition (CAI) and homogenous lean burn combustion as well as certain combinations of these technologies. Within the European market, direct injection is currently the most popular solution. The drawback is that a very expensive exhaust gas aftertreatment system is necessary to keep exhaust emissions within legal limits.
Technical Paper

Development of a Charge Motion Controlled Combustion System for DI SI-Engines and its Vehicle Application for EU-4 Emission Regulations

2000-03-06
2000-01-0257
The development of new passenger car powertrains with gasoline direct injection engines is facing new requirements which result from the need of different operational modes with stratified and homogeneous air fuel mixture. Moreover, the exhaust aftertreatment system causes a discontinuous operation with lean burn adsorption periods followed by short rich spikes for catalyst regeneration. Recent work on combustion system development has shown, that gasoline direct injection can create significant fuel economy benefits. Charge motion controlled combustion systems have proven to be of advantage in terms of low raw emissions compared to wall guided concepts. Based on an initial single-cylinder development phase a multi-cylinder engine was realized with excellent fuel economy, low raw emissions and operational robustness. Finally, the new engine's potential has been demonstrated in a mid-class vehicle.
Technical Paper

Development of a charge motion controlled combustion system for DI SI engines and its vehicle application to EU-4 emission regulations

2000-06-12
2000-05-0058
The development of new passenger car powertrains with gasoline direct- injection engines is facing new requirements which result from the need of different operational modes with stratified and homogeneous air-fuel mixture. Moreover, the exhaust aftertreatment system causes a discontinuous operation with lean-burn absorption periods followed by short rich spikes for catalyst regeneration. Recent work on combustion system development has shown, that gasoline direct injection can create significant fuel economy benefits. Charge motion controlled combustion systems have proven to be of advantage in terms of low raw emissions compared to wall-guided concepts. Based on an initial single-cylinder development phase, a multi-cylinder engine was realized with excellent fuel economy, low raw emissions and operational robustness. Finally, the new engine''s potential has been demonstrated in a mid-class vehicle.
Technical Paper

Downsizing of Diesel Engines: 3-Cylinder / 4-Cylinder

2000-03-06
2000-01-0990
Due to the future application of combustion engines in small and hybrid vehicles, the demand for high efficiency with low mass and compact engine design is of prime importance. The diesel engine, with its outstanding thermal efficiency, is a well suited candidate for such applications. In order to realize these targets, future diesel engines will need to have increasingly higher specific output combined with increased power to weight ratios. This is therefore driving the need for new designs of 3 and/or 4 cylinder, small bore engines of low displacement, sub 1.5l. Recent work on combustion development, has shown that combustion systems, ports, valves and injector sizes are available for bore sizes down to 65 mm.
Technical Paper

Evaluation of Crankshaft Clearance Influence on Specific Roughness Noise Concern

1999-05-17
1999-01-1771
Passenger car customer expects both: low interior noise level and a sound quality, adapted to vehicle driving condition. The latter should be based upon a comfortable sound character without outstanding noise effects. One of the very unpleasant noise characteristics is roughness, also called rap noise or rumbling noise. Beside intake noise and powertrain structure bending, the dynamic crank train behaviour is one of the potential origins of a rough noise pattern. Material properties of the crankshaft and the layout of crankshaft damper can influence roughness as well as the crank train clearances. Subjects of this study, which was performed on a 4-cylinder spark-ignition (SI) engine, were the identification and objectivation of a specific noise concern which occurred during vehicle acceleration. Aim was to evaluate the noise concern sensitivity to the crank train clearances and to define optimum clearance ranges for noise quality improvement.
Technical Paper

Evaluation of Modeling Approaches for NOx Formation in a Common-Rail DI Diesel Engine within the Framework of Representative Interactive Flamelets (RIF)

2008-04-14
2008-01-0971
Representative Interactive Flamelets (RIF) have proven successful in predicting Diesel engine combustion. The RIF concept is based on the assumption that chemistry is fast compared to the smallest turbulent time scales, associated with the turnover time of a Kolmogorov eddy. The assumption of fast chemistry may become questionable with respect to the prediction of pollutant formation; the formation of NOx, for example, is a rather slow process. For this reason, three different approaches to account for NOx emissions within the flamelet approach are presented and discussed in this study. This includes taking the pollutant mass fractions directly from the flamelet equations, a technique based on a three-dimensional transport equation as well as the extended Zeldovich mechanism. Combustion and pollutant emissions in a Common-Rail DI Diesel engine are numerically investigated using the RIF concept. Special emphasis is put on NOx emissions.
Technical Paper

Exhaust Heat Recovery System for Modern Cars

2001-03-05
2001-01-1020
The fuel consumption and the emissions of modern passenger cars are highly affected by the fluid and material temperatures of the engine. Unfortunately, the high thermal efficiencies of Direct Injection (DI) Diesel and Spark Ignition (SI) engines cause in many driving situations low heat transfer to the engine components and especially to the oil and the coolant. In these conditions the normal operating temperatures are not achieved. Especially at low ambient temperatures and low engine loads the requirement of a comfortable cabin heating and a fast warm-up of engine oil and coolant cannot be satisfied simultaneously. To reach the required warm-up performance, an Exhaust Heat Recovery System (EHRS) will be demonstrated. Further design and optimization processes for modern cooling systems in fuel-efficient engines require numerical and experimental investigations of supplemental heater systems to meet all requirements under all circumstances.
Technical Paper

Exhaust Temperature Management for Diesel Engines Assessment of Engine Concepts and Calibration Strategies with Regard to Fuel Penalty

2011-09-11
2011-24-0176
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of carbon dioxide output in the traffic sector depict substantial requirements for the development of future diesel engines. These engines will comprise not only the mandatory diesel oxidation catalyst (DOC) and particulate filter DPF but a NOx aftertreatment system as well - at least for heavier vehicles. The oxidation catalysts as well as currently available NOx aftertreatment technologies, i.e., LNT and SCR, rely on sufficient exhaust gas temperatures to achieve a proper conversion. This is getting more and more critical due to the fact that today's and future measures for CO₂ reduction will result in further decrease of engine-out temperatures. Additionally this development has to be considered in the light of further engine electrification and hybridization scenarios.
Technical Paper

Fuel Consumption and Exhaust Emissions of Diesel, Gasoline and Natural Gas Fuelled Vehicles

2001-11-01
2001-28-0068
With regard to increasingly stringent emission legislation natural gas is gaining interest as an alternate fuel. Concerning mobile application natural gas is often considered to produce potentially lower exhaust emissions compared to diesel and gasoline fuel. Nevertheless, also the exhaust gas of diesel and gasoline fuelled vehicles will be improved by applying advanced technical solutions. The paper reveals the state-of-the-art in exhaust emission behaviour of diesel, gasoline, liquified petroleum gas and natural gas fuelled vehicles. Passenger cars and light-duty trucks will be considered as well as HD-trucks. Emissions include NOx, THC, NMHC, CO, Aldehydes and PAH. In addition CH4 and CO2 emissions are discussed with respect to increasing concern about the greenhouse effect. From the viewpoint of the HD-engines the alternate fuels Dimethylether (DME) and Diesel/water-Emulsion are also considered.
Technical Paper

Fuel Efficient Natural Gas Engine with Common-Rail Micro-Pilot Injection

2000-08-21
2000-01-3080
In the recent years, it has become obvious that one of the main fields of interest in alternate fuels is the public transportation sector. Natural Gas seems to be advantageous. It is available and environmentally friendly, even if the greenhouse effect of methane is considered. The operation range of vehicles running on CNG (Compressed Natural Gas) is poor due to the large pressure vessels, but in case of urban buses with low daily mileage this is acceptable. On the other hand, the use of an environmentally friendly fuel is favorable especially in urban areas. Although there are some advantages of Natural Gas, diesel buses dominate the market. The reason is the better part-load fuel efficiency of the Diesel principle which is superior to the Otto-cycle due to the absence of engine throttling. The efficiency levels of Spark-Ignition (SI) -type, Lean Burn Natural Gas engines are quite comparable to diesel engines during full load conditions.
Technical Paper

Fuel Property Effects on Emissions and Performance of a Light-Duty Diesel Engine

2009-04-20
2009-01-0488
Increased demand for highly fuel efficient propulsion systems drives the engine development community to develop advanced technologies allowing improving the overall thermal efficiency while maintaining low emission levels. In addition to improving the thermal efficiencies of the internal combustion engine itself the developments of fuels that allow improved combustion as well as lower the emissions footprint has intensified recently. This paper will describe the effects of five different fuel types with significantly differing fuel properties on a state-of-the-art light-duty HSDI diesel engine. The fuels cetane number ranges between 26 and 76. These fuels feature significantly differing boiling characteristics as well as heating values. The fuel selection also contains one pure biodiesel (SME - Soy Methyl Ester). This study was conducted in part load and full load operating points using a state of the art HSDI diesel engine.
Technical Paper

Future Potential and Development Methods for High Output Turbocharged Direct Injected Gasoline Engines

2006-04-03
2006-01-0046
With rising gasoline prices in the US the need for increasingly fuel efficient powertrain concepts has never been more critical. Evaluation of the market on the other hand shows that the vehicle-buying consumer is unwilling to compromise engine power output for this needed fuel efficiency. Boosted, direct-injected gasoline engines with high specific output and low end torque seem to be the most logical path to satisfying both good part load fuel economy and generous power and torque characteristics. Turbo lag and subsequent lack of torque during transient acceleration (with low initial engine speeds) are characteristics of current turbocharged gasoline engines. These phenomena have prevented successful penetration of these boosted powertrains into the marketplace. Larger displacement, naturally aspirated gasoline engines have been the preferred choice.
X