Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparative Study of the Effects of Fuel Properties of Non-Petroleum Fuels on Diesel Engine Combustion and Emissions

1984-10-01
841334
A single cylinder indirect injection diesel engine was used to evaluate the emissions, fuel consumption, and ignition delay of non-petroleum liquid fuels derived from coal, shale, and tar sands. Correlations were made relating fuel properties with exhaust emissions, fuel consumption, and ignition delay. The results of the correlation study showed that the indicated fuel consumption, ignition delay, and CO emissions significantly correlated with the H/C ratio, specific gravity, heat of combustion, aromatics and saturates content, and cetane number, Multiple fuel properties were necessary to correlate the hydrocarbon emissions. The NOx emissions did not correlate well with any fuel property. Because these fuels from various resources were able to correlate succesfully with many of the fuel properties suggests that the degree of refinement or the chemical composition of the fuel is a better predictor of its performance than its resource.
Technical Paper

A Mainstream Test Methodology for Developing a Vehicle Equipped with an Electronic Stability Control System

2014-04-01
2014-01-0130
There have been many articles published in the last decade or so concerning the components of an electronic stability control (ESC) system, as well as numerous statistical studies that attempt to predict the effectiveness of such systems relative to crash involvement. The literature however is free from papers that discuss how engineers might develop such systems in order to achieve desired steering, handling, and stability performance. This task is complicated by the fact that stability control systems are very complex and their designs and what they can do have changed considerably over the years. These systems also differ from manufacturer to manufacturer and from vehicle to vehicle in a given maker of automobiles. In terms of ESC hardware, differences can include all the components as well as the addition or absence of roll rate sensors or active steering gears to name a few.
Technical Paper

A Small Displacement DI Diesel Engine Concept for High Fuel Economy Vehicles

1997-08-06
972680
The small-displacement direct-injection (DI) diesel engine is a prime candidate for future transportation needs because of its high thermal efficiency combined with near term production feasibility. Ford Motor Company and FEV Engine Technology, Inc. are working together with the US Department of Energy to develop a small displacement DI diesel engine that meets the key challenges of emissions, NVH, and power density. The targets for the engine are to meet ULEV emission standards while maintaining a best fuel consumption of 200g/kW-hr. The NVH performance goal is transparency with state-of-the-art, four-cylinder gasoline vehicles. Advanced features are required to meet the ambitious targets for this engine. Small-bore combustion systems enable the downsizing of the engine required for high fuel economy with the NVH advantages a four- cylinder has over a three-cylinder engine.
Technical Paper

A Structural Ceramic Diesel Engine-The Critical Elements

1987-02-01
870651
A structural ceramic diesel engine has the potential to provide low heat rejection and significant improvements in fuel economy. Analytical and experimental evaluations were conducted on the critical elements of this engine. The structural ceramic components, which included the cylinder, piston and pin, operated successfully in a single cylinder engine for over 100 hours. The potential for up to 8-11% improvement in indicated specific fuel consumption was projected when corrections for blow-by were applied. The ringless piston with gas squeeze film lubrication avoided the difficulty with liquid lubricants in the high temperature piston/cylinder area. The resulting reduction in friction was projected to provide an additional 15% improvement in brake specific fuel consumption for a multi-cylinder engine at light loads.
Journal Article

An Assessment of Two Piston Bowl Concepts in a Medium-Duty Diesel Engine

2012-04-16
2012-01-0423
Two combustion systems were developed and optimized for an engine for a power cylinder of 0.8-0.9L/cylinder. The first design was a re-entrant bowl concept which was based on the combustion system of a smaller engine with roughly 0.5L/cylinder. The second design was a chamfered bowl concept, a variant of a reentrant bowl that deliberately splits fuel between the bowl and the squish region. For each combustion system concept, nozzle tip protrusion, swirl, and nozzle configuration (number of holes, nozzle flow, and spray angle) were optimized. Several similarities between combustion system concepts were noted, including the optimal swirl and number of holes. The resulting optimums for each concept were compared. The chamfered combustion system was found to have better part-load emissions and fuel consumption tradeoffs. Full load performance was similar at low speed between the two combustion systems, but the reentrant combustion system had advantages at high engine speed and load.
Technical Paper

Characterisation of DISI Emissions and Fuel Economy in Homogeneous and Stratified Charge Modes of Operation

2001-09-24
2001-01-3671
An experimental study of the performance of a reverse tumble, DISI engine is reported. Specific fuel consumption and engine-out emissions have been investigated for both homogeneous and stratified modes of fuel injection. Trends in performance with varying AFR, EGR, spark and injection timings have been explored. It is shown that neural networks can be trained to describe these trends accurately for even the most complex case of stratified charge operation with exhaust gas recirculation.
Technical Paper

Comparison of Variable Camshaft Timing Strategies at Part Load

1996-02-01
960584
In this paper, four Variable Camshaft Timing (VCT) strategies are described: Intake Only, Exhaust Only, Dual Equal, and Dual Independent. The strategies utilize internal residual at part load for NOx reduction and fuel consumption improvement. The emphasis of the paper is a detailed comparison of part load data from steady-state engine dynamometer testing. Projections of EPA cycle fuel economy and emissions benefits relative to external EGR are also shown. Only limited data was acquired at idle and WOT. Implications of the strategies on the engine control system are briefly addressed.
Technical Paper

Control Challenges and Methodologies in Fuel Cell Vehicle Development

1998-10-19
98C054
In recent years, rapid and significant advances in fuel cell technology, together with advances in power electronics and control methodology, has enabled the development of high performance fuel cell powered electric vehicles. A key advance is that the low temperature (80°C) proton-exchange-membrane (PEM) fuel cell has become mature and robust enough to be used for automotive applications. Apart from the apparent advantage of lower vehicle emission, the overall fuel cell vehicle static and dynamic performance and power and energy efficiency are critically dependent on the intelligent design of the control systems and control methodologies. These include the control of: fuel cell heat and water management, fuel (hydrogen) and air (oxygen) supply and distribution, electric drive, main and auxiliary power management, and overall powertrain and vehicle systems.
Technical Paper

Customer Fuel Consumption – The Vehicle Data Bus as Real–World Information Source

2000-03-06
2000-01-1337
Road to rig problems exist as long as vehicles are being tested. Many approaches and methods exist to produce test cycles for rigs or test tracks, in order to produce viable results for the generation of statements concerning such crucial aspects as durability and fuel consumption. Modern model strategies again demand shorter–than–ever development periods, whilst meeting better–than–ever the needs and demands of special target groups. Therefore, the testing methods must also be refined, in order to gain a closer correlation to the customer's vehicle deployment. The approach introduced here makes use of real–world customer data for obtaining a closer look at how the vehicle is used by different customer groups, in different countries. The data is collected by small and unobtrusive dataloggers installed in customer vehicles. As these customers are using their own vehicles in everyday life, being unaware of the acquisition process, a database of real customer usage is generated.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

2001-03-05
2001-01-0510
The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Development of a Standard Spin Loss Test Procedure for 4WD Transfer Cases

2012-04-16
2012-01-0306
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of parasitic losses on all driveline components is required. A standardized comparison procedure enables manufacturers and suppliers to measure component losses consistently, in addition to offering a reliable process to assess enablers for efficiency improvements. This paper reviews the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This procedure was validated for repeatability considering variations in soak time, temperature measurement positions on the transfer case, and test operating conditions. Additional assessments of spin loss at low ambient temperatures, and the effect of component break-in on spin loss were also conducted.
Technical Paper

Diluents and Lean Mixture Combustion Modeling for SI Engines with a Quasi-Dimensional Model

1995-10-01
952382
Lean mixture combustion might be an important feature in the next generation of SI engines, while diluents (internal and external EGR) have already played a key role in the reductions of emissions and fuel consumption. Lean burn modeling is even more important for engine modeling tools which are sometimes used for new engine development. The effect of flame strain on flame speed is believed to be significant, especially under lean mixture conditions. Current quasi-dimensional engine models usually do not include flame strain effects and tend to predict burn rate which is too high under lean burn conditions. An attempt was made to model flame strain effects in quasi-dimensional SI engine models. The Ford model GESIM (stands for General Engine SIMulation) was used as the platform. A new strain rate model was developed with the Lewis number effect included.
Technical Paper

Direct In-cylinder Injection of Water into a PI Hydrogen Engine

2013-04-08
2013-01-0227
Injecting liquid water into a fuel/air charge is a means to reduce NOx emissions. Such strategies are particularly important to hydrogen internal combustion engines, as engine performance (e.g., maximum load) can be limited by regulatory limits on NOx. Experiments were conducted in this study to quantify the effects of direct injection of water into the combustion chamber of a port-fueled, hydrogen IC engine. The effects of DI water injection on NOx emissions, load, and engine efficiency were determined for a broad range of water injection timing. The amount of water injected was varied, and the results were compared with baseline data where no water injection was used. Water injection was a very effective means to reduce NOx emissions. Direct injection of water into the cylinder reduced NOx emissions by 95% with an 8% fuel consumption penalty, and NOx emissions were reduced by 85% without any fuel consumption penalty.
Technical Paper

Engine Reliability Through Infant Mortality Mitigation: Literature Review

2010-10-06
2010-36-0049
Internal combustion engines are designed to meet the high power, low fuel consumption and also, low exhaust emissions. The engine running conditions is valid the concept that, the expectative is very high because of the variety of operating conditions like cold start, frequent start and stop, time high speed and load, traditional gasoline, mix of gasoline and alcohol and finally, alcohol fuel only. Considering such demand, this paper explains the relationship between the reliability bathtub curve, specifically the "Infant Mortality" portion. The bathtub curve describes failure rate as a function of time. The "Infant Mortality" portion of the curve is the initial section for which the failure (death) rate decreases with time (age). In general, these problems are related to manufacturing aspects or poor design definitions. With development of technology, hard failures, the ones that cause dependability, are becoming rare.
Technical Paper

Engineering the Front Wheel Drive Taunus 12M

1964-01-01
640053
The Taunus has been designed to meet the market demand for a car sized midway between the smallest and average sized European car, one that would provide exceptionally low cost of operation and rider comfort. The design described here had as us objectives low weight, low initial cost, superior performance and handling characteristics, comfortable seating and riding qualities, and ample luggage space. Tests show that the manufacturer has not fallen short of any of these objectives.
Technical Paper

Evaluation of Turbocharger Power Assist System Using Optimal Control Techniques

2000-03-06
2000-01-0519
In the paper we employ numerical optimal control techniques to define the best transient operating strategy for a turbocharger power assist system (TPAS). A TPAS is any device capable of bi-directional energy transfer to the turbocharger shaft and energy storage. When applied to turbocharged diesel engines, the TPAS results in significant reduction of the turbo-lag. The optimum transient strategy is capable of improving the vehicle acceleration performance with no deterioration in smoke emissions. These benefits can be attained even if the net energy contribution by the TPAS during the acceleration interval is zero, i.e., all energy is re-generated and returned back to the energy storage by the end of the acceleration interval. At the same time the total fuel consumption during the acceleration interval may be reduced.
Technical Paper

Factors Influencing Drive Cycle Emissions and Fuel Consumption

1997-05-01
971603
A method of predicting HC, CO and NOx emissions and fuel-used over drive cycles has been developed. This has been applied to FTP-75 and ECE+EUDC drive cycles amended to include cold-start and warm-up. The method requires only fully-warm steady state indicated performance data to be available for the engine. This is used in conjunction with a model of engine thermal behaviour and friction characteristics, and vehicle/drive cycle specifications enabling engine brake load/speed variations to be defined. A time marching prediction of engine-out emissions and fuel consumption is carried out taking into account factors which include high engine friction and poor mixture preparation after cold-start. Comparisons with experimental data indicate that fuel consumption and emissions can be predicted to quantitative accuracy. The method has been applied to compare and contrast the importance of various operating regimes during the two cycles.
Technical Paper

Ford Explorer Control Trac 4x4 System

1995-11-01
952645
PURPOSE - Present the new Control Trac four wheel drive system which is the first application of an interactive four wheel drive in a sport utility vehicle. PROBLEM - The Control Trac system was developed in response to the need for a light weight, space efficient, customer friendly, and full function four wheel drive system. The system was targeted to be fully compatible with on highway and off road usage. CONCLUSION - The Control Trac system is a remarkably user friendly, practical, technologically advanced four wheel drive system; compatible with on highway and off road operation.
Technical Paper

Front Wheel Drive Engine Mount Optimization

1984-04-01
840736
This paper presents a guide for front wheel drive transverse engine mount optimization. The rationale for trying to achieve certain powerplant mode shapes and desirable frequency trends for these mode shapes is discussed. A mathematical proof is given for conditions which will ensure that the engine firing torque pulses excite only one engine mode. This will be shown to be desirable for satisfying the many conflicting design constraints. A review of various optimization procedures which were tried is discussed and a detailed explanation of the selected MONTE CARLO procedure is given. Extensive MOTRAN computer results are presented, both for a grounded engine and for a full vehicle.
Technical Paper

Gear Noise Reduction of an Automatic Transmission Through Finite Element Dynamic Simulation

1997-05-20
971966
Numerous authors have previously published on the effects of system dynamics on gear noise in automotive applications [1,2]. It is now widely understood that the torsional compliances and inertias of propeller shafts and pinion gear sets are a controlling factor in final drive gear noise for rear wheel drive vehicles. Considerable progress has been achieved in using finite element simulations of the driveline dynamics to improve the system in regards to gear noise. However very few published results are available showing the application of dynamic simulation methods to automatic transmissions which require considerations of the complications due to epicyclical gear sets. This paper documents the successful application of finite element dynamics modeling methods to the prediction of gear noise from the gear set in a rear wheel drive automatic transmission. The model was used to investigate the effects of component inertias, stiffnesses, and resonances.
X