Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

1987 Thunderbird Turbo Coupe Programmed Ride Control (PRC) Suspension

1987-02-01
870540
This paper describes Programmed Ride Control (PRC), the automatic adjustable shock absorber system designed and patented by Ford Motor Company. The system utilizes low shock absorber damping under normal driving conditions to provide soft boulevard ride, automatically switching to firm damping when required for improved handling. The system's microprocessor control module “learns” where the straight ahead steering wheel position is, allowing the system to respond to absolute steering wheel angle. A closed loop control strategy is used to improve system reliability and to notify the driver in the event of a system malfunction. Fast acting rotary solenoids control the damping rate of the shock absorbers.
Technical Paper

1988 Lincoln Continental Variable-Assist Power Steering System

1988-02-01
880707
Conventional power steering systems can be “tailored” to provide light steering efforts for parking and low speed, or high steering efforts for stability and “road feel” at high speed. In either case, the customer's preferred steering efforts are not provided at all times. Compromises are required. The need for a speed-sensitive steering effort system has prompted the introduction of several innovative variable-assist steering systems in the past few years, which are currently used in some European and Japanese vehicles. This paper describes a Ford-patented variable-assist system used on the 1988 Lincoln Continental, the first application of vehicle speed-sensitive steering to an American-designed and manufactured vehicle. The Ford Variable-Assist Power Steering System is a “rotary steering valve” system. It uses a modification of the current rotary valve to provide low steering efforts (low torsion bar twist) at low speed and higher efforts (more twist) as vehicle speed increases.
Technical Paper

A Calibration Study of CFD for Automotive Shapes and CD

1994-03-01
940323
An extensive calibration study has been initiated to assess the predictive ability of CFD (Computational Fluid Dynamics) for the aerodynamic design of automotive shapes. Several codes are being checked against a set of detailed wind tunnel measurements on ten car-like shapes. The objective is to assess the ability of numerical analysis to predict the CD (drag coefficient) influence of the rear end configuration. The study also provides a significant base of information for investigating discrepancies between predicted and measured flow fields and for assessing new numerical techniques. This technical report compares STAR-CD predictions to the wind tunnel measurements. The initial results are quite encouraging. Calculated centerline pressure distributions on the front end, underbody and floor compare well for all ten shapes. Wake flow structures are in reasonable agreement for many of the configurations. Drag, lift, and pitching moment trends follow the experimental measurements.
Technical Paper

A Comparative Study of the Fatigue Behavior of Spot Welded and Mechanically Fastened Aluminum Joints

1995-02-01
950710
The cyclic behavior of single overlap aluminum joints joined through a number of different methods has been investigated using Alcan 5754-O, an alloy that potentially could be used in structural applications. Overlap shear tests of spot welded, clinched and riveted joints are compared on the basis of their fatigue performance. The fatigue response of the spot welded joint was the baseline to which the other fasteners were compared. Test results showed an improvement of approximately 25% for both the mechanical clinch joints and aluminum rivets in fatigue strength at 106 cycles. The most significant improvement in fatigue strength of 100% was found for the self piercing rivets at 106 cycles. The failure behavior of the various joining methods is discussed as well as the surface appearance.
Technical Paper

A Comparison of Time Domain and Frequency Domain Test Methods for Automotive Components

1994-11-01
942279
Frequency domain testing has had limited use in the past for durability evaluations of automotive components. Recent advances and new perspectives now make it a viable option. Using frequency domain testing for components, test times can be greatly reduced, resulting in considerable savings of time, money, and resources. Quality can be built into the component, thus making real-time subsystem and full vehicle testing and development more meaningful. Time domain testing historically started with block cycle histogram tests. Improved capabilities of computers, controllers, math procedures, and algorithms have led to real time simulation in the laboratory. Real time simulation is a time domain technique for duplicating real world environments using computer controlled multi-axial load inputs. It contains all phase information as in the recorded proving ground data. However, normal equipment limitations prevent the operation at higher frequencies.
Technical Paper

A Discussion of Aerodynamic Interference Effects Between a Race Car and a Race Track Retaining Wall (A Wind Tunnel NASCAR Case Study)

1988-02-01
880458
This report should not be looked upon as an end in itself, but rather as a thought provoker. It raises the question that there may be an additional dimension to race car aerodynamics other than just open roadway drag reduction, stability and handling performance. Some situations are seldom considered, nor even addressed, in public forums. Based upon wind tunnel test data, the authors show, at least for this one test setup, that significantly large changes in aerodynamic forces can be generated on a NASCAR stock car racer by its close proximity to the stationary retaining wall around a race track.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

A Front Rail Design for Efficient Crush Energy Absorption

1995-10-31
1995-20-0016
Although there was a safety awareness from the earliest days of the automobile, systematic approaches to designing for safety became more widespread after 1950 when large numbers of vehicles came into use in both the United States and Europe, and governments in both continents undertook a widespread highway development. Industry response to safety objectives and also to government regulation has produced a large number of safety enhancing engineering developments, including radial tires, disc brakes, anti-lock brakes, improved vehicle lighting systems, better highway sign support poles, padded instrument panels, better windshield retention systems, collapsible hood structures, accident sensitive fuel pump shut-off valves, and other items. A significant development was the design of the energy absorbing front structures.
Journal Article

A Fuzzy Inference System for Understeer/Oversteer Detection Towards Model-Free Stability Control

2016-04-05
2016-01-1630
In this paper, a soft computing approach to a model-free vehicle stability control (VSC) algorithm is presented. The objective is to create a fuzzy inference system (FIS) that is robust enough to operate in a multitude of vehicle conditions (load, tire wear, alignment), and road conditions while at the same time providing optimal vehicle stability by detecting and minimizing loss of traction. In this approach, an adaptive neuro-fuzzy inference system (ANFIS) is generated using previously collected data to train and optimize the performance of the fuzzy logic VSC algorithm. This paper outlines the FIS detection algorithm and its benefits over a model-based approach. The performance of the FIS-based VSC is evaluated via a co-simulation of MATLAB/Simulink and CarSim model of the vehicle under various road and load conditions. The results showed that the proposed algorithm is capable of accurately indicating unstable vehicle behavior for two different types of vehicles (SUV and Sedan).
Technical Paper

A Gasoline Engine Cycle that Permits High Expansion Operation with Reduced Part Load Throttling Losses by Modulating Charge Mass and Temperature

1986-02-01
860327
A four-stroke, spark-ignition engine is described that seeks to achieve high expansion ratio and low throttling losses at light load, whilst retaining good knock resistance at full load operation and without the need for expensive mechanical changes to the engine. The engine does, however, incorporate a second inlet (transfer) valve and associated transfer port linked to the intake port. The timing of the transfer valve is different from that of the main inlet valve. Load modulation is achieved by control of the gas outflow from the transfer port. A computer model of the engine is first validated against measured data from a conventional engine. Comparisons are made of incylinder pressure at part load conditions, total air flowrate through the engine and intake port air velocities as a function of crank angle position.
Technical Paper

A Hybrid Road Loads Prediction Method with Full Vehicle Dynamic Simulation

1997-04-08
971513
A hybrid approach to predict road-induced loads in vehicle structures is presented. The technique involves full vehicle dynamic simulation using measured wheel forces, absolute wheel vertical displacements, and steering angle as input. The wheel vertical displacement is derived from the measured wheel acceleration. This approach avoids the use of tire-road interface modeling. It also improves the conventional loads measuring process with minimum instrumentation and data acquisition. Existing load data from a test vehicle is used to validate this approach. Computed component loads show good agreement with measurements.
Technical Paper

A Magnetorheological Door Check

2001-03-05
2001-01-0619
Several shortcomings of mechanical door checks are overcome using a magnetorheological damper. Because the damper is electrically actuated, it can check in any desired position. The logical decision to activate or release the door check can be made either by passive circuitry based on input signals from switches attached to door handles or under microprocessor control, in which case the decision can take into account a variety of unconventional input factors, including the magnitude of the force applied to the door, the rate of change of the applied force, and the angle of door opening. With the addition of an appropriate proximity sensor, the controllable damper can prevent the door from inadvertently hitting a nearby obstacle. Details of the damper mechanism are described, and several implemented control strategies, both passive and microprocessor based, are discussed.
Technical Paper

A Mainstream Test Methodology for Developing a Vehicle Equipped with an Electronic Stability Control System

2014-04-01
2014-01-0130
There have been many articles published in the last decade or so concerning the components of an electronic stability control (ESC) system, as well as numerous statistical studies that attempt to predict the effectiveness of such systems relative to crash involvement. The literature however is free from papers that discuss how engineers might develop such systems in order to achieve desired steering, handling, and stability performance. This task is complicated by the fact that stability control systems are very complex and their designs and what they can do have changed considerably over the years. These systems also differ from manufacturer to manufacturer and from vehicle to vehicle in a given maker of automobiles. In terms of ESC hardware, differences can include all the components as well as the addition or absence of roll rate sensors or active steering gears to name a few.
Technical Paper

A Method for the Quantification of Front Disc Brake Squeal

1982-02-01
820037
A subjective in-vehicle evaluation system is generally used to evaluate brake noise. This approach is quite dependent on analysis procedure, individual hearing abilities, individual tolerance level to the noise, the vehicle condition, road conditions and weather conditions. Due to the resultant subjective rating's dependence on these non-controllable factors, it was decided to develop an empirical laboratory technique using the brake dynamometer with sensitive noise measuring equipment to collect sufficient data on brake noise to allow engineers to study brake noise problems.
Technical Paper

A Micromachined Silicon Mass-Air-Flow Sensor

1992-02-01
920473
This paper describes the fabrication and operation of a low-cost, monolithic silicon mass-air-flow sensor (MAFS) developed for automotive applications. The device is a hot wire anemometer made of two thin single-crystal silicon beams, one being the heated element and the other serving as a temperature reference. Temperature compensation techniques and the design tradeoffs to maximize performance while ensuring durability in the harsh automotive environment are discussed.
Journal Article

A Model-Free Stability Control Design Scheme with Active Steering Actuator Sets

2016-04-05
2016-01-1655
This paper presents the application of a proposed fuzzy inference system as part of a stability control design scheme implemented with active steering actuator sets. The fuzzy inference system is used to detect the level of overseer/understeer at the high level and a speed-adaptive activation module determines whether an active front steering, active rear steering, or active 4 wheel steering is suited to improve vehicle handling stability. The resulting model-free system is capable of minimizing the amount of model calibration during the vehicle stability control development process as well as improving vehicle performance and stability over a wide range of vehicle and road conditions. A simulation study will be presented that evaluates the proposed scheme and compares the effectiveness of active front steer (AFS) and active rear steer (ARS) in enhancing the vehicle performance. Both time and frequency domain results are presented.
Technical Paper

A Multibody Dynamics Approach to Leaf Spring Simulation for Upfront Analyses

2015-06-15
2015-01-2228
Drivelines used in modern pickup trucks commonly employ universal joints. This type of joint is responsible for second driveshaft order vibrations in the vehicle. Large displacements of the joint connecting the driveline and the rear axle have a detrimental effect on vehicle NVH. As leaf springs are critical energy absorbing elements that connect to the powertrain, they are used to restrain large axle windup angles. One of the most common types of leaf springs in use today is the multi-stage parabolic leaf spring. A simple SAE 3-link approximation is adequate for preliminary studies but it has been found to be inadequate to study axle windup. A vast body of literature exists on modeling leaf springs using nonlinear FEA and multibody simulations. However, these methods require significant amount of component level detail and measured data. As such, these techniques are not applicable for quick sensitivity studies at design conception stage.
Technical Paper

A New Mechanism for Measuring Exhaust A/F

1993-11-01
932957
Exhaust gas air-fuel ratio (A/F) sensors are common devices in powertrain feedback control systems aimed at minimizing emissions. Both resistive (using TiO2) and electrochemical (using ZrO2) mechanisms are used in the high temperature ceramic devices now being employed. In this work a new mechanism for making the measurement is presented based on the change in the workfunction of a Pt film in interaction with the exhaust gas. In particular it is found that the workfunction of Pt increases reversibly by approximately 0.7 V at that point (the stoichiometric ratio) where the exhaust changes from rich to lean conditions. This increase arises from the adsorption of O2 on the Pt surface. On returning to rich conditions, catalytic reaction of the adsorbed oxygen with reducing species returns the workfunction to its original value. Two methods, one capacitive and one thermionic, for electrically sensing this workfunction change and thus providing for a practical device are discussed.
Technical Paper

A New Method Development to Predict Brake Squeal Occurrence

1994-11-01
942258
A new method to predict brake squeal occurrence was developed by MSC under contract to Ford Motor Company. The results indicate that the stability characteristics of this disc brake assembly are governed mainly by the frictional properties between the pads and rotor. The stability is achieved when the friction coefficient of the pads is decreasing as the contact force increases. Based on the results, a stable brake system can be obtained without changing the brake structure by incorporating the appropriate frictional coefficient in the brake system. The method developed here can be also used as a tool to test the quality of any brake design in the early design stage.
X