Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Fault Tolerant Time Interval Process for Functional Safety Development

2019-04-02
2019-01-0110
During development of complex automotive technologies, a significant engineering effort is often dedicated to ensuring the safe performance of these systems. An important aspect to consider when assessing the viability of different safety designs or strategies is the time period from the occurrence of a fault to the violation of a Safety Goal (SG). This time period is commonly referred to as the Fault Tolerant Time Interval (FTTI). In Automotive Safety, ISO 26262 [1] calls for the identification and appropriate partitioning of the FTTI, however very little guidance is provided on how to do this. This paper presents a process, covering the entire safety development lifecycle, for the identification of timing constraints and the development of associated requirements necessary to prevent Safety Goal violations.
Technical Paper

A Framework for Model Based Detection of Misfire in a Gasoline Engine with Dynamic Skip Fire

2019-04-02
2019-01-1288
A framework is proposed for model-based misfire detection in gasoline engines with dynamic skip fire by employing a novel control oriented engine model. The model-based techniques form compact description of plant behavior and have a number of well known benefits. The performance requirements and environment legislation resulted in a rigorous research on misfire detection due to which an extensive literature can be found for the problem of misfire detection in all-cylinder firing gasoline engines. Since there is no fix cylinder activation/de-activation sequence in dynamic skip fire engines. So, the problem of misfire detection in dynamic skip fire engines departs from its trivial nature. In the proposed framework, ‘cylinder skip sequence’ is also fed to the engine model along-with conventional engine inputs. The First Principle based Engine Model constructs the crankshaft angular speed fluctuation pattern for a given cylinder skip sequence.
Technical Paper

A Novel Approach for Validating Adaptive Cruise Control (ACC) Using Two Hardware-in-the-Loop (HIL) Simulation Benches

2019-04-02
2019-01-1038
Adaptive Cruise Control (ACC) is becoming a common feature in modern day vehicles with the advancement of Advanced Driver Assist Systems (ADAS). Simultaneously, Hardware-in-the-Loop (HIL) simulation has emerged as a major component of the automotive product development cycle as it can accelerate product development and validation by supplementing in-vehicle testing. Specifically, HIL simulation has become an integral part of the controls development and validation V-cycles by enabling rapid prototyping of control software for Electronic Control Units (ECUs). Traditionally, ACC algorithms have been validated on a system or subsystem HIL bench with the ACC ECU in the loop such that the HIL bench acts as the host or trailing vehicle with the target or preceding vehicle usually simulated using as an object that follows a pre-defined motion profile.
Technical Paper

A Physically-Based, Lumped-Parameter Model of an Electrically-Heated Three-Way Catalytic Converter

2012-04-16
2012-01-1240
The impact of cold-start emissions is well known on conventional and hybrid electric vehicles. Plug-in electric vehicles offer a unique challenge in that there are opportunities for prolonged engine-off conditions which can lead to catalyst cooling and elevated emissions on engine re-start. This research investigates the development and validation of a system for controlling emissions under these conditions, with an emphasis on a catalytic converter model used for design and analysis. The model is a one-dimensional, lumped-parameter model of a three-way catalytic converter developed in Matlab/Simulink. The catalyst is divided into discrete, axial elements and each discrete element contains states for the temperatures of the gas, substrate, and can wall. Heat transfer mechanisms are modeled from physics-based equations.
Technical Paper

A Safety and Security Testbed for Assured Autonomy in Vehicles

2020-04-14
2020-01-1291
Connectivity and autonomy in vehicles promise improved efficiency, safety and comfort. The increasing use of embedded systems and the cyber element bring with them many challenges regarding cyberattacks which can seriously compromise driver and passenger safety. Beyond penetration testing, assessment of the security vulnerabilities of a component must be done through the design phase of its life cycle. This paper describes the development of a benchtop testbed which allows for the assurance of safety and security of components with all capabilities from Model-in-loop to Software-in-loop to Hardware-in-loop testing. Environment simulation is obtained using the AV simulator, CARLA which provides realistic scenarios and sensor information such as Radar, Lidar etc. MATLAB runs the vehicle, powertrain and control models of the vehicle allowing for the implementation and testing of customized models and algorithms.
Technical Paper

A Simulation Tool for Virtual Validation and Verification of Advanced Driver Assistance Systems

2021-04-06
2021-01-0865
Due to the infeasibility of exhaustive on-road testing of Automated Vehicles (AVs) and vehicles with Advanced Driver Assistance Systems (ADAS), virtual methods for verification and validation of such vehicles have gained prominence. In order to incorporate the variability in the characteristics of test scenarios such as surrounding traffic, weather, obstacles, road network, infrastructure features, etc., as well as provide the option of varying the fidelities of subsystem models, this study discusses a modular software block-set for virtual testing of AV/ADAS controllers based on open source tools. The core concept is to co-simulate the traffic, vehicle dynamics, sensors, and the 3D scenes required for perception. This is achieved using SUMO (Simulation of Urban MObility, a microscopic road-network-based traffic generation tool) and Unreal Engine (for 3D traffic flow generation).
Technical Paper

A Unified, Scalable and Replicable Approach to Development, Implementation and HIL Evaluation of Autonomous Shuttles for Use in a Smart City

2019-04-02
2019-01-0493
As the technology in autonomous vehicle and smart city infrastructure is developing fast, the idea of smart city and automated driving has become a present and near future reality. Both Highway Chauffeur and low speed shuttle applications are tested recently in different research to test the feasibility of autonomous vehicles and automated driving. Based on examples available in the literature and the past experience of the authors, this paper proposes the use of a unified computing, sensing, communication and actuation architecture for connected and automated driving. It is postulated that this unified architecture will also lead to a scalable and replicable approach. Two vehicles representing a passenger car and a small electric shuttle for smart mobility in a smart city are chosen as the two examples for demonstrating scalability and replicability.
Technical Paper

AV/ADAS Safety-Critical Testing Scenario Generation from Vehicle Crash Data

2022-03-29
2022-01-0104
This research leverages publicly available crash data to construct safety-critical scenarios focusing primarily on Level 3 Automated Driving Systems (ADS) safety assessment under highway driving conditions. NHTSA’s Crashworthiness Data System (CDS) has a rich dataset of representative crashes sampled from numerous Primary Sampling Units (PSUs) across the country. Each of these datasets includes the storyline, road geometry information, detailed description of actors involved in the crash, weather information, scene diagrams, crash images, and a myriad of other crash-specific details. The methodology adopted aims to generate critical scenarios from real-world driving to complement the existent regulatory tests for the validation of L3 ADS. For this work, a four-step approach was adopted to extract safety-critical scenarios from crash data.
Technical Paper

Accuracy Assessment of Three-Dimensional Site Features Generated with Aid of Photogrammetric Epipolar Lines in PhotoModeler and Using Minimal sUAS Imagery

2019-04-02
2019-01-0410
Photogrammetry is widely used in the accident reconstruction community to extract three-dimensional information from photographs. This article extends a prior study conducted by the authors, whereby model accuracy was assessed for a technique that exploited vehicle edges and epipolar line projections to construct 3D vehicle models, by examining 3D roadway and site features. To do so, artificial images were generated using an ideal computer-generated camera within a computer-assisted drawing environment to allow for a known reference model to compare with results produced using photogrammetry. A systematic study was undertaken by modeling the curvature, elevation, and super-elevation of a roadway and associated markings, sidewalks, and buildings, either by relying on discrete points or utilizing epipolar lines. The models were assessed for accuracy, and the sensitivity of the accuracy to camera elevation was considered.
Technical Paper

Accuracy Assessment of Three-Dimensional Vehicle Edge Features Generated with Aid of Photogrammetric Epipolar Lines

2018-04-03
2018-01-0530
Photogrammetry is widely used in the automotive and accident reconstruction communities to extract three-dimensional information from photographs. Prior studies in the literature have demonstrated the accuracy of such methods when photographs contain easily-identifiable, distinct points; however, it is often desirable to determine measurements for locations where a seam, edge, or contour line is available. To exploit such details, an analyst can control the direction that the epipolar line is projected onto the camera plane by strategic selection of photographs. This process constrains the search for the corresponding 3D point to a straight line that can be projected perpendicular to the seam, edge, or contour line. Thus, the goal of this study was to evaluate the modeling accuracy for cases in which an analyst uses epipolar lines in a workflow.
Technical Paper

Adaptation of TruckSim Models to Simulate Experimental Heavy Truck Hard Braking Test Data Under Various Levels of Brake Disablement

2010-10-05
2010-01-1920
This research focuses on the development and performance of analytical models to simulate a tractor-semitrailer in straight-ahead braking. The simulations were modified and tuned to simulate full-treadle braking with all brakes functioning correctly, as well as the behavior of the tractor-semitrailer rig under full braking with selected brakes disabled. The models were constructed in TruckSim and based on a tractor-semitrailer used in dry braking performance testing. The full-scale vehicle braking research was designed to define limits for engineering estimates on stopping distance when Class 8 air-braked vehicles experience partial degradation of the foundation brake system. In the full scale testing, stops were conducted from 30 mph and 60 mph, with the combination loaded to 80,000 lbs (gross combined weight or GCW), half payload, and with the tractor-semitrailer unladen (lightly loaded vehicle weight, or LLVW).
Technical Paper

An Approach to Model a Traffic Environment by Addressing Sparsity in Vehicle Count Data

2023-04-11
2023-01-0854
For realistic traffic modeling, real-world traffic calibration data is needed. These data include a representative road network, road users count by type, traffic lights information, infrastructure, etc. In most cases, this data is not readily available due to cost, time, and confidentiality constraints. Some open-source data are accessible and provide this information for specific geographical locations, however, it is often insufficient for realistic calibration. Moreover, the publicly available data may have errors, for example, the Open Street Maps (OSM) does not always correlate with physical roads. The scarcity, incompleteness, and inaccuracies of the data pose challenges to the realistic calibration of traffic models. Hence, in this study, we propose an approach based on spatial interpolation for addressing sparsity in vehicle count data that can augment existing data to make traffic model calibrations more accurate.
Journal Article

Analysis and Mathematical Modeling of Car-Following Behavior of Automated Vehicles for Safety Evaluation

2019-04-02
2019-01-0142
With the emergence of Driving Automation Systems (SAE levels 1-5), the necessity arises for methods of evaluating these systems. However, these systems are much more challenging to evaluate than traditional safety features (SAE level 0). This is because an understanding of the Driving Automation system’s response in all possible scenarios is desired, but prohibitive to comprehensively test. Hence, this paper attempts to evaluate one such system, by modeling its behavior. The model generated parameters not only allow for objective comparison between vehicles, but also provide a more complete understanding of the system. The model can also be used to extrapolate results by simulating other scenarios without the need for conducting more tests. In this paper, low speed automated driving (also known as Traffic Jam Assist (TJA)) is studied. This study focused on the longitudinal behavior of automated vehicles while following a lead vehicle (LV) in traffic jam scenarios.
Journal Article

Analysis of Motor Vibration Isolation System with Focus on Mount Resonances for Application to Electric Vehicles

2015-06-15
2015-01-2364
The vibration isolation effectiveness of powertrain mount configurations is examined for electric vehicle application by considering the effect introduced by internal mount resonances. Unlike internal combustion engines where mounts are typically designed only for static support and low frequency dynamics, electric motors have higher excitation frequencies in a range where mount resonances often occur. The problem is first analytically formulated by considering a simple 3-dimensional powertrain system, and the vibration isolation effectiveness significantly deteriorates at the mount resonance(s). It is shown that by modifying the mount shape, the mount resonance(s) can be shifted while maintaining the same static rate, tuning the frequency away from any engine excitation or natural frequencies. Further, internal mount resonances are utilized to improve vibration isolation over a narrow frequency range, using non-identical mounts to split mount resonance peaks.
Journal Article

Analyzing and Preventing Data Privacy Leakage in Connected Vehicle Services

2019-04-02
2019-01-0478
The rapid development of connected and automated vehicle technologies together with cloud-based mobility services are revolutionizing the transportation industry. As a result, huge amounts of data are being generated, collected, and utilized, hence providing tremendous business opportunities. However, this big data poses serious challenges mainly in terms of data privacy. The risks of privacy leakage are amplified by the information sharing nature of emerging mobility services and the recent advances in data analytics. In this paper, we provide an overview of the connected vehicle landscape and point out potential privacy threats. We demonstrate two of the risks, namely additional individual information inference and user de-anonymization, through concrete attack designs. We also propose corresponding countermeasures to defend against such privacy attacks. We evaluate the feasibility of such attacks and our defense strategies using real world vehicular data.
Technical Paper

Application of Adversarial Networks for 3D Structural Topology Optimization

2019-04-02
2019-01-0829
Topology optimization is a branch of structural optimization which solves an optimal material distribution problem. The resulting structural topology, for a given set of boundary conditions and constraints, has an optimal performance (e.g. minimum compliance). Conventional 3D topology optimization algorithms achieve quality optimized results; however, it is an extremely computationally intensive task which is, in general, impractical and computationally unachievable for real-world structural optimal design processes. Therefore, the current development of rapid topology optimization technology is experiencing a major drawback. To address the issues, a new approach is presented to utilize the powerful abilities of large deep learning models to replicate this design process for 3D structures. Adversarial models, primarily Wasserstein Generative Adversarial Networks (WGAN), are constructed which consist of 2 deep convolutional neural networks (CNN) namely, a discriminator and a generator.
Technical Paper

Application of Collision Probability Estimation to Calibration of Advanced Driver Assistance Systems

2019-04-02
2019-01-1133
Advanced Driver Assistance Systems (ADAS) are designed and calibrated rigorously to provide them with the robustness against highly uncertain environments that they usually operate in. Typical calibration procedures for such systems rely extensively on track (controlled environment) testing, which is time-consuming, expensive, and sometimes cannot cover all the critical test scenarios that could be encountered by ADAS in the real world. Therefore, virtual (simulation-based) testing and validation has been gaining more prominence and emphasis for ensuring high coverage along with easier scalability and usage. This paper attempts to provide an alternative approach for calibrating ADAS in the controller validation phase by the aid of simulated test case scenarios. The study executes characterization of the uncertainty in the position and heading of the ego and the obstacle vehicles.
Technical Paper

Application of Scaled Deflection Injury Criteria to Two Small, Fragile Females in Side Impact Motor Vehicle Crashes

2018-04-03
2018-01-0542
Thoracic injury criteria have been previously developed to predict thoracic injury for vehicle occupants as a function of biomechanical response. Historically, biomechanical testing of post-mortem human surrogates (PMHS) for injury criteria development has primarily been focused on mid-sized males. Response targets and injury criteria for other demographics, including small females, have been determined by scaling values from mid-sized males. The objective of this study was to explore the applicability of scaled injury criteria to their representative population. Two PMHS were subjected to a side-impact loading condition which replicates a near-side, MDB-to-vehicle impact for the driver. This was accomplished using the Advanced Side Impact System, or ASIS, on a HYGE sled. The sled acceleration matched the acceleration profile of an impacted vehicle, while the four pneumatic cylinders of the ASIS produced realistic door intrusion.
Technical Paper

Assessment of Driving Simulators for Use in Longitudinal Vehicle Dynamics Evaluation

2022-03-29
2022-01-0533
In the last decade, the use of Driver-in-the-Loop (DiL) simulators has significantly increased in research, product development, and motorsports. To be used as a verification tool in research, simulators must show a level of correlation with real-world driving for the chosen use case. This study aims to assess the validity of a low-cost, limited travel Vehicle Dynamics Driver-in-Loop (VDDiL) simulator by comparing on-road and simulated driving data using a statistical evaluation of longitudinal and lateral metrics. The process determines if the simulator is appropriate for verifying control strategies and optimization algorithms for longitudinal vehicle dynamics and evaluates consistency in the chosen metrics. A validation process explaining the experiments, choice of metrics, and analysis tools used to perform a validation study from the perspective of the longitudinal vehicle model is shown in this study.
Technical Paper

Automatic Speech Recognition System Considerations for the Autonomous Vehicle

2019-04-02
2019-01-0861
As automakers begin to design the autonomous vehicle (AV) for the first time, they must reconsider customer interaction with the Automatic Speech Recognition (ASR) system carried over from the traditional vehicle. Within an AV, the voice-to-ASR system needs to be capable of serving a customer located in any seat of the car. These shifts in focus require changes to the microphone selection and placement to serve the entire vehicle. Further complicating the scenario are new sources of noise that are specific to the AV that enable autonomous operation. Hardware mounted on the roof that are used to support cameras and LIDAR sensors, and mechanisms meant to keep that hardware clean and functioning, add even further noise contamination that can pollute the voice interaction. In this paper, we discuss the ramifications of picking up the intended customer’s voice when they are no longer bound to the traditional front left “driver’s” seat.
X