Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

50,000 Mile Vehicle Road Test of Three-Way and NOx Reduction Catalyst Systems

1978-02-01
780608
The performance of three way and NOx catalysts was evaluated on vehicles utilizing non-feedback fuel control and electronic feedback fuel control. The vehicles accumulated 80,450 km (50,000 miles) using fuels representing the extremes in hydrogen-carbon ratio available for commercial use. Feedback carburetion compared to non-feedback carburetion improved highway fuel economy by about 0.4 km/l (1 mpg) and reduced deterioration of NOx with mileage accumulation. NOx emissions were higher with the low H/C fuel in the three way catalyst system; feedback reduced the fuel effect on NOx in these cars by improving conversion efficiency with the low H/C fuel. Feedback had no measureable effect on HC and CO catalyst efficiency. Hydrocarbon emissions were lower with the low H/C fuel in all cars. Unleaded gasoline octane improver, MMT, at 0.015g Mn/l (0.06 g/gal) increased tailpipe hydrocarbon emissions by 0.05 g/km (0.08 g/mile).
Journal Article

A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine

2012-09-10
2012-01-1695
Two oxygenated fuels were evaluated on a single-cylinder diesel engine and compared to three hydrocarbon diesel fuels. The oxygenated fuels included canola biodiesel (canola methyl esters, CME) and CME blended with dibutyl succinate (DBS), both of which are or have the potential to be bio-derived. DBS was added to improve the cold flow properties, but also reduced the cetane number and net heating value of the resulting blend. A 60-40 blend of the two (60% vol CME and 40% vol DBS) provided desirable cold flow benefits while staying above the U.S. minimum cetane number requirement. Contrary to prior vehicle test results and numerous literature reports, single-cylinder engine testing of both CME and the 60-40 blend showed no statistically discernable change in NOx emissions relative to diesel fuel, but only when constant intake oxygen was maintained.
Technical Paper

A Comparison of the Effect of E85 vs. Gasoline on Exhaust System Surface Temperatures

2007-04-16
2007-01-1392
With concerns over increasing worldwide demand for gasoline and greenhouse gases, many automotive companies are increasing their product lineup of vehicles to include flex-fuel vehicles that are capable of operating on fuel blends ranging from 100% gasoline up to a blend of 15% gasoline/85% ethanol (E85). For the purpose of this paper, data was obtained that will enable an evaluation relating to the effect the use of E85 fuel has on exhaust system surface temperatures compared to that of regular unleaded gasoline while the vehicle undergoes a typical drive cycle. Three vehicles from three different automotive manufacturers were tested. The surface of the exhaust systems was instrumented with thermocouples at specific locations to monitor temperatures from the manifold to the catalytic converter outlet. The exhaust system surface temperatures were recorded during an operation cycle that included steady vehicle speed operation; cold start and idle and wide open throttle conditions.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Modified Oil Lubrication System with Flow Control to Reduce Crankshaft Bearing Friction in a Litre 4 Cylinder Diesel Engine

2016-04-05
2016-01-1045
The oil distribution system of an automotive light duty engine typically has an oil pump mechanically driven through the front-endancillaries-drive or directly off the crankshaft. Delivery pressure is regulated by a relief valve to provide an oil gallery pressure of typically 3 to 4 bar absolute at fully-warm engine running conditions. Electrification of the oil pump drive is one way to decouple pump delivery from engine speed, but this does not alter the flow distribution between parts of the engine requiring lubrication. Here, the behaviour and benefits of a system with an electrically driven, fixed displacement pump and a distributor providing control over flow to crankshaft main bearings and big end bearings is examined. The aim has been to demonstrate that by controlling flow to these bearings, without changing flow to other parts of the engine, significant reductions in engine friction can be achieved.
Technical Paper

A New Analysis Method for Accurate Accounting of IC Engine Pumping Work and Indicated Work

2004-03-08
2004-01-1262
In order to improve fuel economy, engine manufacturers are investigating various technologies that reduce pumping work in spark ignition engines. Current cylinder pressure analysis methods do not allow valid comparison of pumping work reduction strategies. Existing methods neglect valve timing effects which occur during the expansion and compression strokes, but are actually part of the gas exchange process. These additional pumping work contributions become more significant when evaluating non-standard valve timing concepts. This paper outlines a new analysis method for calculating the pumping work and indicated work of a 4-stroke internal combustion engine. Corrections to PMEP and IMEP are introduced which allow the valid comparison of pumping work and indicated efficiency between engines with different pumping work reduction strategies.
Technical Paper

A Particle Swarm Optimization-Based Method for Fast Parametrization of Transmission Plant Models

2019-04-02
2019-01-0344
Transmission system models require a high level of fidelity and details in order to capture the transient behaviors in drivability and fuel economy simulations. Due to model fidelity, manufacturing tolerances, frictional losses and other noise sources, parametrization and tuning of a large number of parameters in the plant model is very challenging and time consuming. In this paper, we used particle swarm optimization as the key algorithm to fast correlate the open-loop performance of an automatic transmission system plant model to vehicle launch and coast down test data using vehicle control inputs. During normal operations, the model correlated well with test data. For error states, due to the lack of model fidelity, the model cannot reproduce the same error state quantitatively, but provided a valuable methodology for qualitatively identifying error states at the early stages.
Technical Paper

A Quantitative Analysis of the Effects of Rolls Coupling on Fuel Economy and Emission Levels

1981-06-01
810827
The effect of coupling chassis dynamometer rolls (front to rear) on city and highway fuel economy and emissions was investigated. A representative fleet of ten Ford certification vehicles (five passenger cars and five trucks) was tested in coupled and uncoupled roll configurations. Testing was conducted on a Clayton CTE-50 dynamometer with a hydrokinetic power absorption unit (P.A.U.) which was calibrated at a single point (50 mph). It was found that emission levels increased significantly (95% confidence level) for all constituents except city-NOx, which demonstrated mixed results. Observed fuel economy was reduced for both city and highway (3.6% and 4.0%, respectively, for a combined Metro/Highway (M/H) reduction of 3.8%) when the rolls were coupled.
Technical Paper

A Statistical Approach to Assess the Impact of Road Events on PHEV Performance using Real World Data

2011-04-12
2011-01-0875
Plug in hybrid electric vehicles (PHEVs) have gained interest over last decade due to their increased fuel economy and ability to displace some petroleum fuel with electricity from power grid. Given the complexity of this vehicle powertrain, the energy management plays a key role in providing higher fuel economy. The energy management algorithm on PHEVs performs the same task as a hybrid vehicle energy management but it has more freedom in utilizing the battery energy due to the larger battery capacity and ability to be recharged from the power grid. The state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining overall fuel consumption.
Technical Paper

A Strategic Study - The Green and E-Commerce Impacts to Future Automotive Engine System R&D

2003-06-23
2003-01-2315
IC engines have been the dominant automotive powertrain in the 20th century because of their advantages in power density, thermal efficiency, simplicity, durability and mobility. Condensing 100 years of information on automotive engine system technology evolution shows five different development stages: “bone and muscle”, “instinct”, “nerve and brain”, “intelligence”, and “system optimization”. Currently, the last step is facing the pressure of the “clean revolution” plus the “e-commerce revolution”. To meet future emission requirements and reduce CO2 emissions, the conventional engine system will be pushed to new physical limits, leading to higher cost and reduced durability. Therefore, the automobile industry should consider re-engineering or system optimization of the engines, including configuring the system architecture to be as transparent as possible to suit the fast changing environment of e-commerce.
Journal Article

A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry

2018-04-03
2018-01-0230
In light-duty direct-injection (DI) diesel engines, combustion chamber geometry influences the complex interactions between swirl and squish flows, spray-wall interactions, as well as late-cycle mixing. Because of these interactions, piston bowl geometry significantly affects fuel efficiency and emissions behavior. However, due to lack of reliable in-cylinder measurements, the mechanisms responsible for piston-induced changes in engine behavior are not well understood. Non-intrusive, in situ optical measurement techniques are necessary to provide a deeper understanding of the piston geometry effect on in-cylinder processes and to assist in the development of predictive engine simulation models. This study compares two substantially different piston bowls with geometries representative of existing technology: a conventional re-entrant bowl and a stepped-lip bowl. Both pistons are tested in a single-cylinder optical diesel engine under identical boundary conditions.
Technical Paper

A Study on Charge Motion Requirements for a Class-Leading GTDI Engine

2017-09-04
2017-24-0065
An integral part of combustion system development for previous NA gasoline engines was the optimization of charge motion towards the best compromise in terms of full load performance, part load stability, emissions and, last but not least, fuel economy. This optimum balance may potentially be different in GTDI engines. While it is generally accepted that an increased charge motion level improves the mixture preparation in direct injection gasoline engines, the tradeoff in terms of performance seems to become less dominant as the boosting systems of modern engines are typically capable enough to compensate the flow losses generated by the more restrictive ports. Nevertheless, the increased boost level does not come free; increased charge motion generates higher pumping- and wall heat losses. Hence it is questionable and engine dependent, whether more charge motion is always better.
Technical Paper

A Variable Displacement Supercharger Performance Evaluation

2017-03-28
2017-01-0640
The Variable Displacement Supercharger (VDS) is a twin helical screw style compressor that has a feature to change its displacement and its compression ratio actively during vehicle operation. This device can reduce the parasitic losses associated with supercharging and improve the relative fuel economy of a supercharged engine. Supercharging is a boosting choice with several advantages over turbocharging. There is fast pressure delivery to the engine intake manifold for fast engine torque response providing the fun to drive feel. The performance delivered by a supercharger can enable engine fuel economy actions to include engine downsizing and downspeeding. The cost and difficulty of engineering hot exhaust components is eliminated when using only an air side compressor. Faster catalyst warm up can be achieved when not warming the turbine housing of a turbocharger.
Technical Paper

A View of Flexible Fuel Vehicle Aldehyde Emissions

1988-08-01
881200
The aldehyde emissions of 1.6L and 5.0L flexible fuel vehicles (FFV) have been measured, with and without a catalyst, on a range of fuels. The “zero mile” catalyzed emission levels of formaldehyde when operating on M85 (85% methanol and 15% gasoline) are in the 5-15 mg/mi range, but as mileage accumulates they tend to be in the 30-50 mg/mi range. The feedgas levels are high and appear to correlate with engine displacement. The formaldehyde and methanol emissions are higher when operating on M100, compared to M85, but the non-oxygenated hydrocarbon emissions are about the same for both fuels, which suggests that the use of M85 may actually provide more air quality benefit than M100. High mileage control of aldehydes to the level of gasoline vehicles does not appear possible with current technology.
Technical Paper

Adaptive Algorithm for Engine Air – Fuel Ratio Control with Dual Fuel Injection Systems

2017-03-28
2017-01-0588
Dual fuel injection systems, like PFI+DI (port fuel injection + direct injection system) are being increasingly used in gasoline engine applications to increase the engine performance, fuel efficiency and reduce emissions. At a given engine operating condition, the air/fuel error is a function of the fraction of fuel injected by each of the fuel systems. If the fraction of fuel from each of the fuel system is changed at a given operating condition, the fuel system error will change as well making it challenging to learn the fuel system errors. This paper aims at describing the adaptive fueling control algorithm to estimate the fuel error contribution from each individual fuel system. Considering the fuel injection system slope errors to be the significant cause for air-fuel errors, a model structure was developed to calculate the fuel system adaptive correction factor as a function of changing fraction of fueling between the fuel systems.
Technical Paper

Adaptive Nonlinear Model Predictive Cruise Controller: Trailer Tow Use Case

2017-03-28
2017-01-0090
Conventional cruise control systems in automotive applications are usually designed to maintain the constant speed of the vehicle based on the desired set-point. It has been shown that fuel economy while in cruise control can be improved using advanced control methods namely adopting the Model Predictive Control (MPC) technology utilizing the road grade preview information and allowance of the vehicle speed variation. This paper is focused on the extension of the Adaptive Nonlinear Model Predictive Controller (ANLMPC) reported earlier by application to the trailer tow use-case. As the connected trailer changes the aerodynamic drag and the overall vehicle mass, it may lead to the undesired downshifts for the conventional cruise controller introducing the fuel economy losses. In this work, the ANLMPC concept is extended to avoid downshifts by translating the downshift conditions to the constraints of the underlying optimization problem to be solved.
Journal Article

Advancements and Opportunities for On-Board 700 Bar Compressed Hydrogen Tanks in the Progression Towards the Commercialization of Fuel Cell Vehicles

2017-03-28
2017-01-1183
Fuel cell vehicles are entering the automotive market with significant potential benefits to reduce harmful greenhouse emissions, facilitate energy security, and increase vehicle efficiency while providing customer expected driving range and fill times when compared to conventional vehicles. One of the challenges for successful commercialization of fuel cell vehicles is transitioning the on-board fuel system from liquid gasoline to compressed hydrogen gas. Storing high pressurized hydrogen requires a specialized structural pressure vessel, significantly different in function, size, and construction from a gasoline container. In comparison to a gasoline tank at near ambient pressures, OEMs have aligned to a nominal working pressure of 700 bar for hydrogen tanks in order to achieve the customer expected driving range of 300 miles.
Technical Paper

Air Charge Estimation in Camless Engines

2001-03-05
2001-01-0581
An electromechanically driven valve train offers unprecedented flexibility to optimize engine operation for each speed load point individually. One of the main benefits is the increased fuel economy resulting from unthrottled operation. The absence of a restriction at the entrance of the intake manifold leads to wave propagation in the intake system and makes a direct measurement of air flow with a hot wire air meter unreliable. To deliver the right amount of fuel for a desired air-fuel ratio, we therefore need an open loop estimate of the air flow based on measureable or commanded signals or quantities. This paper investigates various expressions for air charge in camless engines based on quasi-static assumptions for heat transfer and pressure.
Technical Paper

Air Conditioning System Performance and Vehicle Fuel Economy Trade-Offs for a Hybrid Electric Vehicle

2017-03-28
2017-01-0171
In this paper, the tradeoff relationship between the Air Conditioning (A/C) system performance and vehicle fuel economy for a hybrid electric vehicle during the SC03 drive cycle is presented. First, an A/C system model was integrated into Ford’s HEV simulation environment. Then, a system-level sensitivity study was performed on a stand-alone A/C system simulator, by formulating a static optimization problem which minimizes the total energy use of actuators, and maintains an identical cooling capacity. Afterwards, a vehicle-level sensitivity study was conducted with all controllers incorporated in sensitivity analysis software, under three types of formulations of cooling capacity constraints. Finally, the common observation from both studies, that the compressor speed dominates the cooling capacity and the EDF fan has a marginal influence, is explained using the thermodynamics of a vapor compression cycle.
Technical Paper

Alternative to Phthalate Plasticizer for PVC/NBR Formulation Used in Automotive Fuel System with Biodiesel

2017-03-28
2017-01-0482
Phthalates have been extensively used in rubbers formulation as plasticizer additive for PVC and NBR promoting processing parameters or for cost reduction. The most commonly used plasticizer in PVC compounds was di-2-ethylhexyl phthalate (DEHP) currently not recommend due toxicity. DEHP is listed as prohibited to the Global Automotive Declarable Substance List (GADSL). Phthalates alternatives are already available but the compatibility in automotive fuel system with biodiesel was not extensively understood. This aspect is important since plasticizer may migrate and change rubber properties. Tri-2-ethylhexyl trimellitate (TOTM) and di-2-ethylhexyl terephthalate (DEHT) were selected in this work as alternative additives to a rubber formulation since is not listed to GADSL and have good potential as plasticizer.
X