Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1983 Ranger Pickup

1981-11-01
811270
The Ford Ranger will be a domestically built, small pickup truck engineered to many design objectives typical of a fullsize pickup, yet with four cylinder engine fuel efficiency. Ranger is a full-function on-and-off road pickup truck with a uniquely smooth ride and a capacity to carry up to a 725.7 kg. (1600 lb.) payload. The truck features a three passenger body-on-frame cab and a double wall pickup box with provision for 1.2m × 2.4m (4 ft. × 8 ft.) sheets of construction material. Featured in this comprehensive paper are the engineering highlights and innovations contributing to the accomplishment of these Small Truck objectives.
Technical Paper

2005 Fuel Cell Vehicle and its Magnesium Power Distribution Unit

2005-04-11
2005-01-0339
The High Voltage Power Distribution Unit (PDU) is constructed of magnesium in support of Fuel Cell Electric Vehicle (FCEV) weight reduction efforts. The PDU distributes and controls a nominal 75 kilowatts of power generated by the Fuel Cell, the primary source of High Voltage power, to all the vehicle loads and accessories. The constraints imposed on the design of the PDU resulted in a component highly susceptible to general and galvanic corrosion. Corrosion abatement was the focus of the PDU redesign. This paper describes the redesign efforts undertaken by Ford personnel to improve the part robustness and corrosion resistance.
Technical Paper

A Bootstrap Approach to Training DNNs for the Automotive Theater

2017-03-28
2017-01-0099
The proposed technique is a tailored deep neural network (DNN) training approach which uses an iterative process to support the learning of DNNs by targeting their specific misclassification and missed detections. The process begins with a DNN that is trained on freely available annotated image data, which we will refer to as the Base model, where a subset of the categories for the classifier are related to the automotive theater. A small set of video capture files taken from drives with test vehicles are selected, (based on the diversity of scenes, frequency of vehicles, incidental lighting, etc.), and the Base model is used to detect/classify images within the video files. A software application developed specifically for this work then allows for the capture of frames from the video set where the DNN has made misclassifications. The corresponding annotation files for these images are subsequently corrected to eliminate mislabels.
Technical Paper

A Case Study in Hardware-In-the-Loop Testing: Development of an ECU for a Hybrid Electric Vehicle

2004-03-08
2004-01-0303
Ford Motor Company has recently implemented a Hardware-In-the-Loop (HIL) testing system for a new, highly complex, hybrid electric vehicle (HEV) Electronic Control Unit (ECU). The implementation of this HIL system has been quick and effective, since it is based on proven Commercial-Off-The-Shelf (COTS) automation tools for real-time that allow for a very flexible and intuitive design process. An overview of the HIL system implementation process and the derived development benefits will be shown in this paper. The initial concept for the use of this HIL system was a complete closed-loop vehicle simulation environment for Vehicle System Controller testing, but the paper will show that this concept has evolved to allow for the use of the HIL system for many facets of the design process.
Technical Paper

A Comparison of Different Methods for Battery and Supercapacitor Modeling

2003-06-23
2003-01-2290
In future vehicles (e.g. fuel cell vehicles, hybrid electric vehicles), the electrical system will have an important impact on the mechanical systems in the car (e.g. powertrain, steering). Furthermore, this coupling will become increasingly important over time. In order to develop effective designs and appropriate control systems for these systems, it is important that the plant models capture the detailed physical behavior in the system. This paper will describe models of two electrical components, a battery and a supercapacitor, which have been modeled in two ways: (i) modeling the plant and controller using block diagrams in Simulink and (ii) modeling the plant and controller in Dymola followed by compiling this model to an S-function for simulation in Simulink. Both the battery and supercapacitor model are based on impedance spectroscopy measurements and can be used for highly dynamic simulations.
Technical Paper

A Crack Detection Method for Self-Piercing Riveting Button Images through Machine Learning

2020-04-14
2020-01-0221
Self-piercing rivet (SPR) joints are a key joining technology for lightweight materials, and they have been widely used in automobile manufacturing. Manual visual crack inspection of SPR joints could be time-consuming and relies on high-level training for engineers to distinguish features subjectively. This paper presents a novel machine learning-based crack detection method for SPR joint button images. Firstly, sub-images are cropped from the button images and preprocessed into three categories (i.e., cracks, edges and smooth regions) as training samples. Then, the Artificial Neural Network (ANN) is chosen as the classification algorithm for sub-images. In the training of ANN, three pattern descriptors are proposed as feature extractors of sub-images, and compared with validation samples. Lastly, a search algorithm is developed to extend the application of the learned model from sub-images into the original button images.
Technical Paper

A Data Mining and Optimization Process with Shape and Size Design Variables Consideration for Vehicle Application

2018-04-03
2018-01-0584
This paper presents a design process with data mining technique and advanced optimization strategy. The proposed design method provides insights in three aspects. First, data mining technique is employed for analysis to identify key factors of design variables. Second, relationship between multiple types of size and shape design variables and performance responses can be analyzed. Last but not least, design preference can be initialized based on data analysis to provide priori guidance for the starting design points of optimization algorithm. An exhaust system design problem which largely contributes to the improvement of vehicular Noise, Vibration and Harshness (NVH) performance is employed for the illustration of the process. Two types of design parameters, structural variable (gauge of component) and layout variable (hanger location), are considered in the studied case.
Journal Article

A Data-Driven Diagnostic System Utilizing Manufacturing Data Mining and Analytics

2017-03-28
2017-01-0233
The wide applications of automatic sensing devices and data acquisition systems in automotive manufacturing have resulted in a data-rich environment, which demands new data mining methodologies for effective data fusion and information integration to support decision making. This paper presents a new methodology for developing a diagnostic system using manufacturing system data for high-value assets in automotive manufacturing. The proposed method extends the basic attributes control charts with the following key elements: optimal feature subset selection considering multiple features and correlation structure, balancing the type I and type II errors in decision making, on-line process monitoring using adaptive modeling with control charts, and diagnostic performance assessment using shift and trend detection. The performance of the developed diagnostic system can be continuously improved as the knowledge of machine faults is automatically accumulated during production.
Technical Paper

A Detailed Aerodynamics Investigation of Three Variants of the Generic Truck Utility

2021-04-06
2021-01-0950
Three pickup truck variants of the Generic Truck Utility (GTU) are evaluated and compared using wind tunnel test data and computational fluid dynamics (CFD) simulations. The configurations analyzed are the short cab/long box, medium cab/medium box, and long cab/short box geometries, which all share a common vehicle length and wheelbase. Both cab and box length are known to influence the total bluff body drag through the interaction of the cab wake in the pickup box with the total vehicle wake, and the GTU provides an excellent test box to investigate the details of these interactions. Experimental testing was conducted at the WindShear wind tunnel on a full-scale GTU model, while transient CFD simulations were carried out with IconCFD®, an open-source based solver. Experimental and CFD results are used to describe the general flow field around the vehicle, and a comparison is made with the wind tunnel integral force data as well as centerline pressure tap data.
Technical Paper

A Finite Element and Experimental Analysis of a Light Truck Leaf Spring System Subjected to Pre-Tension and Twist Loads

2005-11-01
2005-01-3568
In this study the finite element method is used to simulate a light truck multi-leaf spring system and its interaction with a driven axle, u-bolts, and interface brackets. In the first part of the study, a detailed 3-D FE model is statically loaded by fastener pre-tension to determine stress, strain, and contact pressure. The FE results are then compared and correlated to both strain gage and interface pressure measurements from vehicle hardware test. Irregular contact conditions between the axle seat and leaf spring are investigated using a design of experiments (DOE) approach for both convex and discrete step geometries. In the second part of the study, the system FE model is loaded by both fastener pre-tension and external wheel end loads in order to obtain the twist motion response. Torsional deflection, slip onset, and subsequent slip motion at the critical contact plane are calculated as a function of external load over a range of Coulomb friction coefficients.
Technical Paper

A Functional Decomposition Approach for Feature-Based Reference Architecture Modeling

2021-04-06
2021-01-0259
Variant modeling techniques have been developed to allow systems engineers to model multiple similar variants in a product line as a single variant model. In this paper, we expand on this past work to explore the extent to which variant modeling in SysML can be applied to a broad range of dissimilar systems, covering the entire domain of ground vehicles, in single reference architecture model. Traditionally, a system’s structure is decomposed into subsystems and components. However, this method is found to be ineffective when modeling variants that are functionally similar but structurally different. We propose to address this challenge by first decomposing the system not only by subsystem but also by high-level function. This pattern is particularly useful for situations where two variants perform the same function, but one variant performs the function using one subsystem, whereas the other variant performs the same function using one or more different subsystems.
Technical Paper

A Generic Teaching Case Study for Teaching Design for Six Sigma

2006-04-03
2006-01-0501
There are several reasons why it can be daunting to apply Six Sigma to product creation. Foremost among them, the functional performance of new technologies is unknown prior to starting a project. Although, Design For Six Sigma (DFSS) was developed to overcome this difficulty, a lack of applicable in-class case studies makes it challenging to train the product creation community. The current paper describes an in-class project which illustrates how Six Sigma is applied to a simulated product creation environment. A toy construction set (TCS) project is used to instruct students how to meet customer expectations without violating cost, packaging volume and design-complexity constraints.
Technical Paper

A New Approach of Generating Travel Demands for Smart Transportation Systems Modeling

2020-04-14
2020-01-1047
The transportation sector is facing three revolutions: shared mobility, electrification, and autonomous driving. To inform decision making and guide smart transportation system development at the city-level, it is critical to model and evaluate how travelers will behave in these systems. Two key components in such models are (1) individual travel demands with high spatial and temporal resolutions, and (2) travelers’ sociodemographic information and trip purposes. These components impact one’s acceptance of autonomous vehicles, adoption of electric vehicles, and participation in shared mobility. Existing methods of travel demand generation either lack travelers’ demographics and trip purposes, or only generate trips at a zonal level. Higher resolution demand and sociodemographic data can enable analysis of trips’ shareability for car sharing and ride pooling and evaluation of electric vehicles’ charging needs.
Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Technical Paper

A Packaging Layout to Mitigate Crosstalk for SiC Devices

2018-04-03
2018-01-0462
SiC devices have inherent fast switching capabilities due to their superior material properties, and are considered potential candidates to replace Si devices for traction inverters in electrified vehicles in future. However, due to the comparatively low gate threshold voltage, SiC devices may encounter oscillatory false triggering especially during fast switching. This paper analyzed the causes of false triggering, and also studied the impact of a critical parasitic parameter - common source inductance. It is shown that crosstalk is the main cause for the false triggering in the case and some positive common source inductance help to mitigate the crosstalk issue. A packaging layout method is proposed to create the positive common source inductance through layout of control terminals / busbars, and/or the use of control terminal bonded wires at different height.
Technical Paper

A Statistical Approach to Assess the Impact of Road Events on PHEV Performance using Real World Data

2011-04-12
2011-01-0875
Plug in hybrid electric vehicles (PHEVs) have gained interest over last decade due to their increased fuel economy and ability to displace some petroleum fuel with electricity from power grid. Given the complexity of this vehicle powertrain, the energy management plays a key role in providing higher fuel economy. The energy management algorithm on PHEVs performs the same task as a hybrid vehicle energy management but it has more freedom in utilizing the battery energy due to the larger battery capacity and ability to be recharged from the power grid. The state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining overall fuel consumption.
Technical Paper

A System for Autonomous Braking of a Vehicle Following Collision

2017-03-28
2017-01-1581
This paper presents two brake control functions which are initiated when there is an impact force applied to a host vehicle. The impact force is generated due to the host vehicle being collided with or by another vehicle or object. The first function - called the post-impact braking assist - initiates emergency brake assistance if the driver is braking during or right after the collision. The second function - called the post-impact braking - initiates autonomous braking up to the level of the anti-lock-brake system if the driver is not braking during or right after the collision. Both functions intend to enhance the current driver assistance features such as emergency brake assistance, electronic stability control, anti-brake-lock system, collision mitigation system, etc.
Technical Paper

A Systematic Approach to Develop Metaheuristic Traffic Simulation Models from Big Data Analytics on Real-World Data

2021-04-06
2021-01-0166
Researchers and engineers are utilizing big data analytics to draw further insights into transportation systems. Large amounts of data at the individual vehicle trip level are being collected and stored. The true potential of such data is still to be determined. In this paper, we are presenting a data-driven, novel, and intuitive approach to model driver behaviors using microscopic traffic simulation. Our approach utilizes metaheuristic methods to create an analytical tool to assess vehicle performance. Secondly, we show how microscopic simulation run outputs can be post-processed to obtain vehicle and trip level performance metrics. The methodology will form the basis for a data-driven approach to unearthing trip experiences as realized by drivers in the real world. The methodology will contribute to, A.) Using vehicle trajectory traces to identify underlying vehicle maneuver distributions as obtained from real-world driver data, B.)
Technical Paper

A Topographically Structural Optimization Methodology for Improving Noise Radiation in Transaxles

2007-05-15
2007-01-2287
In this paper, a new technology for the design of silent transaxles is developed, where topography optimization is adopted and an artificial parameter called β is proposed as an objective function, representing an upper bound of the surface velocity. The strategy of the optimization is to minimize β while getting the surface velocities less than β. as the constraints. A numerical example of reducing transaxle's radiated noise by using the new optimization technology is given in the paper. In the example, an entire Ford transaxle system was modeled numerically, where most internal components were included. First a modal frequency velocity analysis was conducted. Then an acoustic power analysis based on the Acoustic Transfer Vector (ATV) was carried out. Finally, a topography optimization based on the β - method for the transaxle was performed to minimize the radiated noise.
Technical Paper

A Vehicle Model Architecture for Vehicle System Control Design

2003-03-03
2003-01-0092
A robust Vehicle Model Architecture (VMA) has been developed to support model-based Vehicle System Control (VSC) design work and, in general, model-based vehicle system engineering activities. It is based on a logical breakdown of the vehicle into key subsystems with supporting bus infrastructure for distribution of signals between subsystems. Primary physical interfaces between the top level subsystems have been defined. Subsystem models that comply with these interfaces can be easily plugged into the architecture for complete simulation of vehicle systems. The VMA encourages model re-use and sharing between project teams and, furthermore, removes key obstacles to sharing of models with suppliers.
X