Refine Your Search

Topic

Search Results

Technical Paper

A Numerical Study of Cavitating Flow Through Various Nozzle Shapes

1997-05-01
971597
The flow through diesel fuel injector nozzles is important because of the effects on the spray and the atomization process. Modeling this nozzle flow is complicated by the presence of cavitation inside the nozzles. This investigation uses a two-dimensional, two-phase, transient model of cavitating nozzle flow to observe the individual effects of several nozzle parameters. The injection pressure is varied, as well as several geometric parameters. Results are presented for a range of rounded inlets, from r/D of 1/40 to 1/4. Similarly, results for a range of L/D from 2 to 8 are presented. Finally, the angle of the corner is varied from 50° to 150°. An axisymmetric injector tip is also simulated in order to observe the effects of upstream geometry on the nozzle flow. The injector tip calculations show that the upstream geometry has a small influence on the nozzle flow. The results demonstrate the model's ability to predict cavitating nozzle flow in several different geometries.
Technical Paper

A Study on the Effects of Fuel Viscosity and Nozzle Geometry on High Injection Pressure Diesel Spray Characteristics

1997-02-24
970353
The objective of this study was to investigate the effects of fuel viscosity and the effects of nozzle inlet configuration on the characteristics of high injection pressure sprays. Three different viscosity fuels were used to reveal the effects of viscosity on the spray characteristics. The effects of nozzle inlet configuration on spray characteristics were studied using two mini-sac six-hole nozzles with different inlet configurations. A common rail injection system was used to introduce the spray at 90 MPa injection pressure into a constant volume chamber pressurized with argon gas. The information on high pressure transient sprays was captured by a high speed movie camera synchronized with a pulsed copper vapor laser. The images were analyzed to obtain the spray characteristics which include spray tip penetration, spray cone angle at two different regions, and overall spray Sauter Mean Diameter (SMD).
Technical Paper

A Vehicle Model Architecture for Vehicle System Control Design

2003-03-03
2003-01-0092
A robust Vehicle Model Architecture (VMA) has been developed to support model-based Vehicle System Control (VSC) design work and, in general, model-based vehicle system engineering activities. It is based on a logical breakdown of the vehicle into key subsystems with supporting bus infrastructure for distribution of signals between subsystems. Primary physical interfaces between the top level subsystems have been defined. Subsystem models that comply with these interfaces can be easily plugged into the architecture for complete simulation of vehicle systems. The VMA encourages model re-use and sharing between project teams and, furthermore, removes key obstacles to sharing of models with suppliers.
Technical Paper

Application of LIN Network Interface for Ford South America Vehicles

2003-11-18
2003-01-3692
Some communication buses are too powerful and expensive for simple digital on/off operations such as activating lights, wipers, windows, etc. For these applications the LIN bus is currently the most promising communication protocol across the world's automotive industry. This paper addresses a study using LIN (Local Interconnect Network) for Ford South America vehicles. This will propose a new electrical architecture designed with LIN network, which will be replacing the conventional rear and front lights cables in Trucks, where other higher protocols, such as CAN, are not cost effective. LIN is a new low cost serial communication system intended to be used for distributed electronic system that will allow gaining further quality enhancement and cost reduction on cables, connectors and switches.
Journal Article

CFD Driven Parametric Design of Air-Air Jet Pump for Automotive Carbon Canister Purging

2017-03-28
2017-01-1316
A jet pump (also known as ejector) uses momentum of a high velocity jet (primary flow) as a driving mechanism. The jet is created by a nozzle that converts the pressure head of the primary flow to velocity head. The high velocity primary flow exiting the nozzle creates low pressure zone that entrains fluid from a secondary inlet and transfers the total flow to desired location. For a given pressure of primary inlet flow, it is desired to entrain maximum flow from secondary inlet. Jet pumps have been used in automobiles for a variety of applications such as: filling the Fuel Delivery Module (FDM) with liquid fuel from the fuel tank, transferring liquid fuel between two halves of the saddle type fuel tank and entraining fresh coolant in the cooling circuit. Recently, jet pumps have been introduced in evaporative emission control system for turbocharged engines to remove gaseous hydrocarbons stored in carbon canister and supply it to engine intake manifold (canister purging).
Technical Paper

Car Multimedia Bus Development

2000-08-21
2000-01-3060
The following paper will discuss the latest developments that are taking place in the automobile industry pertaining to the development of a high-speed data bus standard. By 2005, it is likely that we will see the introduction of numerous high-speed, real time multimedia applications proliferating into the vehicle. These applications will provide the car owner access to information, entertainment, communication, and safety as well as the Internet. These systems will also drive the need to have a high-speed data bus serving as a backbone for data traffic between different applications. Currently, the minimum bus speed being considered for such applications is 100 Mbps, which is suitable for transmitting a compressed video and audio data stream. Concerns about electromagnetic interference (EMI) and weight have driven the physical media requirement to be plastic optical fiber (POF).
Technical Paper

Co-fueling of Urea for Diesel Cars and Trucks

2002-03-04
2002-01-0290
Urea SCR is an established method to reduce NOx in dilute exhaust gas. The method is being used currently with stationary powerplants, and successful trials on motor vehicles have been conducted. The reason most often cited for rejecting urea SCR is lack of urea supply infrastructure, yet urea and other high nitrogen products are traded as commodities on the world market as a fertilizer grade, and an industrial grade is emerging. For a subset of commercial vehicles, urea can be provided by service personnel at designated terminals. But this approach does not support long distance carriers and personal use vehicles. The preferred delivery method is to add urea during vehicle refueling through a common fuel nozzle and fill pipe interface: urea / diesel co-fueling. Aqueous urea is well suited to delivery in this fashion.
Technical Paper

Comparative Analysis between American and European Requirements for Electronic Stability Control (ESC) Focusing on Commercial Vehicles

2019-09-15
2019-01-2141
Analysis of road accidents has shown that an important portion of fatal crashes involving Commercial Vehicles are caused by rollovers. ESC systems in Commercial Vehicles can reduce rollovers, severe understeer or oversteer conditions and minimize occurrences of jackknifing events. Several studies have estimated that this positive effect of ESC on road safety is substantial. In Europe, Electronic Stability Control (ESC) is expected to prevent by far the most fatalities and injuries: about 3,000 fatalities (-14%), and about 50,000 injuries (-6%) per year. In Europe, Electronic Stability Control Systems is mandatory for all vehicles (since Nov. 1st, 2011 for new types of vehicle and Nov. 1st, 2014 for all new vehicles), including Commercial Vehicles, Buses, Trucks and Trailers.
Journal Article

Design Considerations for Hydrogen Management System on Ford Hydrogen Fueled E-450 Shuttle Bus

2009-04-20
2009-01-1422
As part of a continuous research and innovation effort, Ford Motor Company has been evaluating hydrogen as an alternative fuel option for vehicles with internal combustion engines since 1997. Ford has recently designed and built an Econoline (E-450) shuttle bus with a 6.8L Triton engine that uses gaseous hydrogen fuel. Safe practices in the production, storage, distribution, and use of hydrogen are essential for the widespread public and commercial acceptance of hydrogen vehicles. Hazards and risks inherent in the application of hydrogen fuel to internal combustion engine vehicles are explained. The development of a Hydrogen Management System (H2MS) to detect hydrogen leaks in the vehicle is discussed, including the evolution of the H2MS design from exploration and quantification of risks, to implementation and validation of a working system on a vehicle. System elements for detection, mitigation, and warning are examined.
Technical Paper

Determination of Diesel Injector Nozzle Characteristics Using Two-Color Optical Pyrometry

2002-03-04
2002-01-0746
An investigation of several diesel injector nozzles that produced different engine emissions performance was performed. The nozzle styles used were two VCO type nozzles that were manufactured using two different techniques, and two mini-sac nozzles that provided comparison. Fired experiments were conducted on a Detroit Diesel Series 50 engine. Optical access was obtained by substituting a sapphire window for one exhaust valve. Under high speed, high load, retarded injection timing conditions, it was discovered that each nozzle produced different specific soot and NOx emissions. High-speed film images were obtained. It was discovered that the temperature and KL factor results from the 2-color optical pyrometry showed significant differences between the nozzles. The authors propose the possibility that differences in air entrainment, caused by potential differences in CD due to surface finish, may contribute to the variance in emissions performance.
Technical Paper

Development and Experimental Study of a New Diesel Exhaust Particulate Trap System*

2000-10-16
2000-01-2846
Diesel exhaust particulate trap system is one of the most effective means to control diesel particulate emissions from diesel vehicles. In this paper, a recently developed diesel exhaust particulate trap system was described and experimentally studied. This system employed a wall-flow ceramic foam filter, which was made of silicon carbide or chromium oxide. And this system was equipped with a microwave heater for the purpose of filter regeneration. Engine dynamometer testing, vehicle bench testing and on-road evaluation of this system were conducted. The experiments studied on the filtration efficiency of this system, the effectiveness of filter regeneration, the power penalty of the vehicle, the ability of noise suppression of this system, and the durability of this particulate trap system. The experimental results showed that this diesel particulate trap system was effective, reliable, and durable.
Technical Paper

Development of Micro-Diesel Injector Nozzles via MEMS Technology and Effects on Spray Characteristics

2001-03-05
2001-01-0528
Micro-machined planar orifice nozzles have been developed and used with commercially produced diesel injection systems. Such a system may have the capability to improve the spray characteristics in DI diesel engines. The availability of a MEMS (Micro-Electro-Mechanical-Systems) processing sequence supported the construction of micro-planar orifice nozzles, and micro-systems technology was also employed in our macro-instrumentation. To demonstrate this process, fourteen MEMS nozzles were fabricated with deep X-ray lithography and electroplating technology. The circular orifice diameters were varied from 40 to 260 microns and the number of orifices varied from one to 169. Three plates with non-circular orifices were also fabricated to examine the effect of orifice shape on spray characteristics. These nozzles were then attached to commercial injectors and the associated injection systems were used for the spray experiments.
Technical Paper

Development of Micro-Diesel Injector Nozzles via MEMS Technology and Initial Results for Diesel Sprays

1999-10-25
1999-01-3645
We have developed and used micro-machined injector nozzles with commercially produced diesel injection systems that have the capability to improve the spray characteristics in DI diesel engines. The availability of a MEMS (Micro-Electro-Mechanical-Systems) processing sequence supported the construction of micro-diesel injector nozzles, and micro-systems technology was also employed in our macro-instrumentation. Fourteen different circular plates (nickel-iron alloy) were fabricated with deep X-ray lithography and electroplating technology. Five plates that have a single orifice were fabricated to investigate the effect of orifice diameter on spray characteristics; i.e., 40 to 260 microns. The spacing between multiple orifices was also varied; e.g., two plates that each had 41 orifices and 169 orifices, respectively, with a diameter of 40 microns. Finally, three plates with non-circular orifices were also made to examine the effect of orifice shape on spray characteristics.
Technical Paper

Effect of Test Section Configuration on Aerodynamic Drag Measurements

2001-03-05
2001-01-0631
Aerodynamic measurements in automotive wind tunnels are degraded by test section interference effects, which increase with increasing vehicle blockage ratio. The current popularity of large vehicles (i.e. trucks and sport utility vehicles) makes this a significant issue. This paper describes the results of an experimental investigation carried out in support of the Ford/Sverdrup Driveability Test Facility (DTF), which includes an aero-acoustic wind tunnel (Wind Tunnel No. 8). The objective was to quantify the aerodynamic interference associated with two candidate test section configurations for Wind Tunnel No. 8-semi-open jet and slotted wall. The experiments were carried out at 1/11-scale in Sverdrup laboratories. Four automobile shapes (MIRA models) and six Sport Utility Vehicle (SUV) shapes representing blockages from 7% to 25% were used to evaluate changes in measured aerodynamic coefficients for the two test section configurations.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on D.I. Diesel Emissions and Performance

1995-02-01
950604
An emissions and performance study was performed to show the effects of injection pressure, nozzle hole inlet condition (sharp and rounded edge) and nozzle included spray angle on particulate, NOx, and BSFC. The tests were conducted on a fully instrumented single-cylinder version of the Caterpillar 3406 heavy duty engine at 75% and 25% load at 1600 RPM. The fuel system consisted of an electronically controlled, hydraulically actuated, unit injector capable of injection pressures up to 160 MPa. Particulate versus NOx trade-off curves were generated for each case by varying the injection timing. The 75% load results showed the expected decrease in particulate and flattening of the trade-off curve with increased injection pressure. However, in going from 90 to 160 MPa, the timing had to be retarded to maintain the same NOx level, and this resulted in a 1 to 2% increase in BSFC. The rounded edged nozzles were found to have an increased discharge coefficient.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on Spray SMD and D.I. Emissions

1995-10-01
952360
A study was performed to correlate the Sauter Mean Diameter (SMD), NOx and particulate emissions of a direct injection diesel engine with various injection pressures and different nozzle geometry. The spray experiments and engine emission tests were conducted in parallel using the same fuel injection system and same operating conditions. With high speed photography and digital image analysis, a light extinction technique was used to obtain the spray characteristics which included spray tip penetration length, spray angle, and overall average SMD for the entire spray. The NOx and particulate emissions were acquired by running the tests on a fully instrumented Caterpillar 3406 heavy duty engine. Experimental results showed that for higher injection pressures, a smaller SMD was observed, i.e. a finer spray was obtained. For this case, a higher NOx and lower particulate resulted.
Technical Paper

Freeze Protection of Onboard Urea Co-Fueling System

2006-04-03
2006-01-0645
The urea co-fueling approach to refilling a urea storage container onboard a vehicle is based on the design of a two-fluid dispensing nozzle. With a single refueling operation the nozzle enables an independent delivery of two fluids, diesel fuel and urea, into two separate containers. The person refueling the vehicle needs no new skills or knowledge. But most importantly, the co-fueling method eliminates a separate and a critical action of keeping up with timely refills of the urea as the condition for emissions compliance for the vehicle. However, freezing of aqueous solution of urea below -11.5°C puts additional demands on the design of the two-fluid nozzle and the vehicle fill pipe receptacle, so that a reliable co-fueling process is assured at these cold weather conditions. The paper describes the methods that prevent formation of ice in the co-fueling fill pipe, which would enable refilling of urea during continuous use of the vehicle at temperatures below urea freezing point.
Technical Paper

Internal Flow in a Scale Model of a Diesel Fuel Injector Nozzle

1992-10-01
922308
An experimental investigation of turbulent flow patterns in a scale model of a high pressure diesel fuel injector nozzle has been conducted. Instantaneous velocity measurements were made in a 50X transparent model of one hole of the injector nozzle using an Aerometrics Phase Doppler Particle Analyzer (PDPA) in the velocity mode. Length to diameter ratio (L/D) values of 1.3, 2.4, 4.9, and 7.7 and inlet radius to diameter ratio (R/D) values of approximately 0 and 0.3 were investigated. Two steady flow average Reynolds numbers (10,500 and 13,300), analogous to fuel injection velocities and sac pressures of approximately 320 and 405 m/s and 67 and 107 MPa (10,000 and 16,000 psi), were investigated. The axial progression of mean and root mean square (rms) axial velocities was obtained for both sharp and rounded inlet conditions and varying L/D. The discharge coefficient was also calculated for each geometry.
Technical Paper

Investigation of Diesel Liquid Spray Penetration Fluctuations under Vaporizing Conditions

2012-04-16
2012-01-0455
Diesel combustion and emissions formation is largely spray and mixing controlled and hence understanding spray parameters, specifically vaporization, is key to determine the impact of fuel injector operation and nozzle design on combustion and emissions. In this study, an eight-hole common rail piezoelectric injector was tested in an optically accessible constant volume combustion vessel at charge gas conditions typical of full load boosted engine operation. Liquid penetration of the eight sprays was determined via processing of images acquired from Mie back scattering under vaporizing conditions by injecting into a charge gas at elevated temperature with 0% oxygen. Conditions investigated included a charge temperature sweep of 800 to 1300 K and injection pressure sweep of 1034 to 2000 bar at a constant charge density of 34.8 kg/m₃.
Technical Paper

Investigation of MicroFlow Machining Effects on Diesel Injector Spray Characteristics

2004-03-08
2004-01-0026
An investigation of the effect of microflow machining on the spray characteristics of diesel injectors was undertaken. A collection of four VCO injector tips were tested prior to and after an abrasive flow process using a high viscosity media. The injector nozzles were tested on a spray fixture. Rate of injection measurements and high-speed digital images were used for the quantification of the air entrainment rate. Comparisons of the spray characteristics and A/F ratios were made for conditions of before and after the abrasive flow process. Results showed a significant decrease in the injection-to-injection variability and improvement of the spray symmetry. A link between the quantity of air entrained and potential differences in spray plume internal chemical composition and temperature is proposed via equilibrium calculations.
X