Refine Your Search

Topic

Author

Search Results

Technical Paper

A Method for Determining Mileage Accumulation for Robustness Validation of Advanced Driver Assistance Systems (ADAS) Features

2024-04-09
2024-01-1977
Robustness testing of Advanced Driver Assistance Systems (ADAS) features is a crucial step in ensuring the safety and reliability of these systems. ADAS features include technologies like adaptive cruise control, lateral and longitudinal controls, automatic emergency braking, and more. These systems rely on various sensors, cameras, radar, lidar, and software algorithms to function effectively. Robustness testing aims to identify potential vulnerabilities and weaknesses in these systems under different conditions, ensuring they can handle unexpected scenarios and maintain their performance. Mileage accumulation is one of the validation methods for achieving robustness. It involves subjecting the systems to a wide variety of real-world driving conditions and driving scenarios to ensure the reliability, safety, and effectiveness of the ADAS features.
Technical Paper

A Response Surface Based Tool for Evaluating Vehicle Performance in the Pedestrian Leg Impact Test

2008-04-14
2008-01-1244
An interactive tool for predicting the performance of vehicle designs in the pedestrian leg impact test has been developed. This tool allows users to modify the design of a vehicle front structure through the use of a graphical interface, and then evaluates the performance of the design with a response surface. This performance is displayed in the graphical interface, providing the user with nearly instantaneous feedback to his design changes. An example is shown that demonstrates how the tool can be used to help guide the user towards vehicle designs that are likely to improve performance. As part of the development of this tool, a simplified, parametric finite element model of the front structure of the vehicle was created. This vehicle model included eleven parameters that could be adjusted to change the structural dimensions and structural behavior of the model.
Journal Article

A Study on Monetary Cost Analysis for Product-Line Architectures

2008-04-14
2008-01-0280
We present a cost model that analyzes monetary costs for a product-line architecture to help the optimization of the architecture. The paper illustrates the usefulness of this methodology in a case study based upon the design exploration of a product-line architecture for an active safety system.
Technical Paper

An Integrated Stochastic Design Framework Using Cross-Validated Multivariate Metamodeling Methods

2003-03-03
2003-01-0876
An integrated stochastic design framework that facilitates practical applications involving time-consuming CAE simulations is described. The probabilistic performance measure that addresses stochastic uncertainties in CAE modeling and simulations is used to support design decision-making. Two enabling metamodeling methods using cross-validated radial basis functions (CVRBF) and a corresponding uniform sampling method are introduced to approximate highly nonlinear CAE model input/output relationships. A vehicle restraint system example is used to demonstrate the effectiveness of the proposed framework and enabling techniques.
Technical Paper

CFD Based Lumped Parameter Method to Predict the Thermal Performance of Brake Rotors in Vehicle

2003-03-03
2003-01-0601
The objective of the paper is to outline a CFD based lumped parameter method that compares the thermal performance of brake rotors, predicts the transient temperatures and brake lining wear in vehicle. A two-pronged approach was developed for this purpose. A rotor stand-alone model was used to predict rotor performance curves. Simultaneously heat transfer coefficients of the brake rotor were computed corresponding to the rotor performance curves and the appropriate heat transfer correlations were established. The second part of this approach involved developing a brake model in a vehicle and solving for the air flow through rotors in different vehicles at various speeds. These rotor flows were cross-referenced with the rotor performance curves, generated earlier for that rotor, to compute the heat transfer coefficients in the vehicle.
Technical Paper

Design for Crashworthiness of Vehicle Structures Using an Extended Hybrid Cellular Automaton Method

2019-04-02
2019-01-0842
This paper introduces a design methodology to tailor the acceleration and displacement responses of a vehicle structure subjected to a dynamic crushing load. The proposed approach is an extension of the hybrid cellular automaton (HCA) method, through which the internal energy density is uniformly distributed within the structure. The proposed approach, referred here to as an extended HCA (xHCA) method, receives the suitable combinations of volume fraction and a finite element meta-parameter for which the algorithm synthesizes the load paths that allow the desired crash response. Lower meta-parameter values lead designs obtained by traditional optimizers, while larger values lead to designs obtained by the HCA method. Simultaneous implementation of multiple values of meta-parameters is presented here as a further development of xHCA method.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Technical Paper

Development of Evaluation Methods for Steering Loss of Assist

2019-04-02
2019-01-1236
Loss of power steering assist (LoA) is viewed as a potential hazard in certain vehicle operational scenarios. Despite the importance of this steering failure mode, few published test protocols for the objective or subjective evaluation of vehicle performance in a loss of assist situation exist. The first part of this paper examines five of the key steering failure modes that can result in LoA and discusses why LoA persists as a key industry challenge. The second part analyzes the situational dynamics affecting vehicle controllability during a LoA event and proposes a subjective evaluation driving course that facilitates evaluations in various LoA scenarios. A corresponding objective test procedure and metric is also proposed. These evaluation methods support consistent performance evaluation of physical vehicles while also enabling the prediction of vehicle characteristics early in the vehicle development process (VDP).
Technical Paper

Enabling Powertrain Variants through Efficient Controls Development

2014-04-01
2014-01-1160
The paper examines how the issue of lengthy development times can be mitigated by adopting a multivariable physics based control method for the development and deployment of complex engine control algorithms required for modern diesel engines equipped with Lean NOx Trap aftertreatment technology. The proposed approach facilitates manufacturers to consider lower cost powertrain configurations for selected markets while maintaining higher performance configurations for other markets. The contribution includes on-engine results from joint work between General Motors and Honeywell. The Honeywell OnRAMP Design Suite which applies model predictive control techniques was used for model identification, control design (using model predictive control) and its calibration. With no prior work on the engine this process of calibrating an engine model and achieving transient drive cycle control on the engine required ten days in the test cell and five days of offline work using the OnRAMP software.
Technical Paper

Evaluation of the Ignition Hazard Posed by Onboard Refueling Vapor Recovery Canisters

2001-03-05
2001-01-0731
ORVR (Onboard Refueling Vapor Recovery) canisters trap vapors during normal operations of a vehicle's engine, and during refueling. This study evaluates the relative risks involved should a canister rupture in a crash. A canister impactor was developed to simulate real-world impacts and to evaluate the canisters' rupture characteristics. Numerous performance aspects of canisters were evaluated: the energy required to rupture a canister; the spread of carbon particles following rupture; the ease of ignition of vapor-laden particles; the vapor concentration in the area of ruptured, vapor-laden canisters; and the potential of crashes to rupture and ignite canisters. Results from these five items were combined into a risk analysis.
Technical Paper

Failure Evaluation of Clinched Thin Gauged Pedestrian Friendly Hood by Slam Simulation

2011-04-12
2011-01-0789
In order to reduce the number of head injuries sustained by pedestrian accidents, safety engineers are developing pedestrian friendly hood systems through gauge optimization of the hood inner panel. In this study, the clinch method was employed to assemble a pedestrian friendly hood with a 0.5mm thick inner panel. Static and dynamic analyses were carried out to determine the clinch experiencing the highest loads and to understand the fatigue behavior of a clinched hood during a slam event. The macroscopic failure modes of clinched joints by hood slam were studied by means of a scanning electron microscope. A simple equation was derived to correlate the hexahedron spot weld model as a substitute for clinching in order to obtain an equivalent stiffness for a clinched joint within the linear region of an F-D curve. The F-D curve was obtained by lap shear testing.
Technical Paper

GM's Evolving Epsilon Midsize Car Platform

2005-04-11
2005-01-1028
This paper reviews the history of the General Motor's Epsilon Platform from a Body Structure perspective. From the time that it was conceived in 1996 to the present, the platform has evolved to meet many changing requirements. The focus of this paper will cover basic body requirements such as crash performance, modal requirements, packaging issues, changes for wheelbase and powertrains, mass, different body styles, etc, including the differences between European and US requirements. It will demonstrate that this globally developed platform met all its initial requirements and continued to evolve over time to meet additional changing requirements.
Journal Article

Modeling and Analysis of a Turbocharged Diesel Engine with Variable Geometry Compressor System

2011-09-11
2011-24-0123
In order to increase the efficiency of automotive turbochargers at low speed without compromising the performance at maximum boost conditions, variable geometry compressor (VGC) systems, based on either variable inlet guide vanes or variable geometry diffusers, have been recently considered as a future design option for automotive turbochargers. This work presents a modeling, analysis and optimization study for a Diesel engine equipped with a variable geometry compressor that help understand the potentials of such technology and develop control algorithms for the VGC systems,. A cycle-averaged engine system model, validated on experimental data, is used to predict the most important variables characterizing the intake and exhaust systems (i.e., mass flow rates, pressures, temperatures) and engine performance (i.e., torque, BMEP, volumetric efficiency), in steady-state and transient conditions.
Technical Paper

Modeling of Human Response From Vehicle Performance Characteristics Using Artificial Neural Networks

2002-05-07
2002-01-1570
This study investigates a methodology in which the general public's subjective interpretation of vehicle handling and performance can be predicted. Several vehicle handling measurements were acquired, and associated metrics calculated, in a controlled setting. Human evaluators were then asked to drive and evaluate each vehicle in a winter driving school setting. Using the acquired data, multiple linear regression and artificial neural network (ANN) techniques were used to create and refine mathematical models of human subjective responses. It is shown that artificial neural networks, which have been trained with the sets of objective and subjective data, are both more accurate and more robust than multiple linear regression models created from the same data.
Technical Paper

Multi-Material Topology Optimization for Crashworthiness Using Hybrid Cellular Automata

2019-04-02
2019-01-0826
Structures with multiple materials have now become one of the perceived necessities for automotive industry to address vehicle design requirements such as light-weight, safety, and cost. The objective of this study is to develop a design methodology for multi-material structures accountable for vehicle crash durability. The heuristic topology synthesis approach of Hybrid Cellular Automaton (HCA) framework is implemented to generate multi-material structures with the constraint on the volume fraction of the final design. The HCA framework is integrated with ordered-SIMP (solid isotropic material with penalization) interpolation, artificial material library, as well as statistical analysis of material distribution data to ensure a smooth transition between multiple practical materials during the topology synthesis.
Technical Paper

Noise and Vibration Measurement Methods for Large Diameter Single-Piece Aluminum Propeller Shafts

2017-06-05
2017-01-1775
This paper describes recently developed test methods and instrumentation to address the specific noise and vibration measurement challenges posed by large-diameter single-piece tubular aluminum propeller (prop) shafts with high modal density. The prop shaft application described in this paper is a light duty truck, although the methods described are applicable to any rotating shaft with similar dynamic properties. To provide a practical example of the newly developed methods and instrumentation, impact FRF data were acquired in-situ for two typical prop shafts of significantly different diameter, in both rotating and stationary conditions. The example data exhibit features that are uniquely characteristic of large diameter single-piece tubular shafts with high modal density, including the particular effect of shaft rotation on the measurements.
Technical Paper

Posture and Position Validation of the 3-D CAD Manikin RAMSIS for Use in Automotive Design at General Motors

1999-05-18
1999-01-1899
This paper describes the validation of RAMSIS, a 3-D CAD human model for ergonomic vehicle evaluation at General Motors (GM). The model’s capability to correctly predict position and posture in vehicle CAD environments was tested. H- and Eye point locations between RAMSIS manikins and their human counterparts were compared. We concluded that RAMSIS has good position and posture prediction capabilities and is a useful CAD ergonomic evaluation and design tool for vehicle interiors.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

2009-06-09
2009-01-2279
Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
Technical Paper

Springback Prediction Using Combined Hardening Model

2000-10-03
2000-01-2659
The main objective of this paper is to simulate the springback using combined kinematic/isotropic hardening model. Material parameters in the hardening model are identified by an inverse method. Three-point bending test is conducted on 6022-T4 aluminum sheet. Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves is generated with the material parameters found in this way, which can be used with other plastic models. ABAQUS/Standard 5.8, which has the combined isotropic/kinematic hardening model, is used to simulate draw-bend of 6022-T4 series aluminum sheet. Absolute springback angles are predicted very accurately.
X