Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparison of Conversion Efficiency and Flow Restriction Performance of Ceramic and Metallic Catalyst Substrates

2001-03-05
2001-01-0926
Catalyst systems utilizing ceramic and metallic substrates were compared to assess the influence of various substrate parameters on the exhaust gas conversion efficiency and flow restriction. In particular, the substrate surface area, substrate specific heat capacity, and substrate volume were all evaluated for their importance in estimating the conversion efficiency of the catalyst system. Additionally, substrate open frontal area and cell hydraulic diameter were compared against exhaust restriction performance.
Technical Paper

A Qualitative and Quantitative Aerodynamic Study of a Rotating Wheel inside a Simplified Vehicle Body and Wheel Liner Cavity

2019-04-02
2019-01-0658
As automotive OEMs (Original Equipment Manufacturer) struggle to reach a balance between Design and Performance, environmental legislations continues to demand more rapid gains in vehicle efficiency. As a result, more attention is being given to the contributions of both tire and wheels. Not only tire rolling resistance, but also tire and wheel aerodynamics are being shown to be contributors to overall efficiency. To date, many studies have been done to correlate CFD simulations of rotating wheels both in open and closed wheeled environments to windtunnel results. Whereas this ensures proper predictive capabilities, little focus has been given to thoroughly explaining the physics that govern this complex environment. This study seeks to exhaustively investigate the complex interactions between the ground, body, and a rotating tire/wheel.
Technical Paper

A Stochastic Approach for Occupant Crash Simulation

2000-04-02
2000-01-1597
Stochastic simulation is used to account for the uncertainties inherent to the system and enables the study of crash phenomenon. For analytical purposes, random variables such as material crash properties, angle of impact, human response and the like can be characterized using statistical models. The methodology outlined in this approach is based on using the information about the probability of random variables along with structural behavior in order to quantify the scatter in the structural response. Thus the analysis gives a more complete picture of the actual simulation. Practical examples for the use of this technique are demonstrated and an overview of this approach is presented.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Active Boom Noise Damping of Dodge Durango

2001-04-30
2001-01-1614
Two active boom noise damping techniques using a Helmholtz resonator-based compensator and a lead compensator called a positive pressure feedback have been developed at the University of Dayton [1]. The two damping techniques are of feedback type and their compensators can be implemented in software or hardware (using inexpensive operational amplifiers). The active damping system would rely on a speaker, a low-cost microphone, two accelerometers, and an electronic circuit (or a micro-controller) to add damping to the offending low-frequency vibroacoustic modes of the cavity. The simplicity of the active boom noise damping system lends itself to be incorporated into a vehicle's sound system. The Helmholtz resonator-based strategy is implemented on a Dodge Durango sport utility vehicle. The control scheme adds appreciable amount of damping to the first cavity mode and the first structurally induced acoustic mode of the cabin.
Technical Paper

Advanced Mounting System for Light Duty Diesel Filter

2007-04-16
2007-01-0471
This paper employs a systematic approach to packaging design and testing of a system and its components in order to determine the long term durability of light duty diesel filters. This effort has utilized a relatively new aluminum titanate filter technology as well as an advanced support mat technology engineered to provide superior holding force at lower temperatures while maintaining its high temperature performance. Together, these two new technologies form a system that addresses the unique operating conditions of diesel engines. Key physical properties of both the filter and the mat are demonstrated through laboratory testing. The system behavior is characterized by various laboratory techniques and validation procedures.
Technical Paper

Application of Micro-Perforated Composite Acoustic Material to a Vehicle Dash Mat

2011-05-17
2011-01-1623
In recent years several variants of lightweight multi-layered acoustic treatments have been used successfully in vehicles to replace conventional barrier-decoupler interior dash mats. The principle involved is to utilize increased acoustic absorption to offset the decrease in insertion loss from the reduced mass such that equivalent vehicle level performance can be achieved. Typical dual density fibrous constructions consist of a relatively dense cap layer on top of a lofted layer. The density and flow resistivity of these layers are tuned to optimize a balance of insertion loss and absorption performance. Generally these have been found to be very effective with the exception of dash mats with very high insertion loss requirements. This paper describes an alternative treatment which consists of a micro-perforated film top layer and fibrous decoupler layer.
Technical Paper

Automotive Materials Engineering Challenges and Solutions for the Use of Ethanol and Methanol Blended Fuels

2010-04-12
2010-01-0729
Economic market forces and increasing environmental awareness of gasoline have led to interest in developing alternatives to gasoline, and extending the current global supply for transportation fuels. One viable strategy is the use of alternative alcohol fuels for combustion engines, with ethanol and methanol in various concentration ranges proposed and in-use. Utilizing and citing data from this review, a comprehensive overview of the materials selection and engineering challenges facing metals, plastics and elastomers are presented. The engineering approach and solution-sets discussed will focus on production feasibility and implementation. The effects from the fuel chemistry and quality of fuel ethanol produced on the related vehicle components are discussed.
Technical Paper

Calculations of Wind Tunnel Circuit Losses and Speed with Acoustic Foams

2008-04-14
2008-01-1203
The GM Aerodynamics Laboratory (GMAL) was modified in 2001 to reduce the background noise level and provide a semi-anechoic test section for wind noise testing. The walls and ceiling of the test section were lined with acoustic foam and foam-filled turning vanes were installed in the corners. Portions of the wind tunnel circuit were also treated with fiberglass material covered by perforated sheet metal panels. High skin drag due to roughness of the foam surfaces, along with high blockage due to the large turning vanes, increased the wind tunnel circuit losses so that the maximum wind speed in the test section was reduced. The present study calculates the averaged total pressure losses at three locations to evaluate the reductions in skin drag and blockage from proposed modifications to the circuit, which were intended to increase the test section wind speed without compromising noise levels.
Technical Paper

Comparative Analysis of Different Heavy Duty Diesel Oxidation Catalysts Configurations

2004-03-08
2004-01-1419
Diesel Oxidation Catalyst in conjunction with large frontal area substrates is a key element in HDV Diesel emission control systems. This paper describes and reviews tests on a set of various Diesel Oxidation Catalyst configurations (for example cell densities), all with the same catalyst coating. The Diesel Oxidation Catalyst specimens were subjected to the European Stationary Cycle (ESC), the European Transient Cycle (ETC), and the US heavy duty Federal Test Procedure (US FTP). The focus was to study relative emissions, pressure drop, and light-off performance. All tests were conducted using the same Detroit Diesel Series 60 engine operating on ultra low sulfur diesel fuel. In addition to this, the exhaust was regulated so that the backpressure on the engine, upstream of the catalyst was also the same for all catalysts.
Technical Paper

Critical Plane Analysis of Rubber Bushing Durability under Road Loads

2016-04-05
2016-01-0393
We demonstrate here an accounting of damage accrual under road loads for a filled natural rubber bushing. The accounting is useful to developers who wish to avoid the typical risks in development programs: either the risk of premature failure, or of costly overdesign. The accounting begins with characterization of the elastomer to quantify governing behaviors: stress-strain response, fatigue crack growth rate, crack precursor size, and strain crystallization. Finite Element Analysis is used to construct a nonlinear mapping between loads and strain components within each element. Multiaxial, variable amplitude strain histories are computed from road loads. Damage accrues in this reckoning via the growth of cracks. Crack growth is calculated via integration of a rate law from an initial size to a size marking end-of-life.
Technical Paper

DPF Regeneration-Concept to Avoid Uncontrolled Regeneration During Idle

2004-10-26
2004-01-2657
Significant particulate emission reductions of diesel engines can be achieved using diesel particulate filters (DPFs). Ceramic wall flow filters with a PM efficiency of >90% have proven to be effective components in emission control. The challenge for the application lies with the development and adaptation of a reliable regeneration strategy. The main focus is emission efficiency over the legally required durability periods, as well as over the useful vehicle life. It will be shown, that new DPF systems are characterized by a high degree of integration with the engine management system, to allow for initiation of the regeneration and its control for optimum DPF protection. Using selected cases, the optimum combination and tuning will be demonstrated for successful regenerations, taking into account DPF properties.
Technical Paper

Design Considerations for Advanced Ceramic Catalyst Supports

2000-03-06
2000-01-0493
Stringent emissions standards with 95+% conversion efficiency requirements call for advanced ceramic catalyst supports with thinner walls, higher cell density and optimum cell shape. The extrusion technology for cellular ceramics has also made significant progress which permits the manufacture of advanced catalyst supports. Similarly, modifications in cordierite chemistry and the manufacturing process have led to improved microstructure from coatability and thermal shock points of view. The design of these supports, however, requires a systems approach to balance both the performance and durability requirements. Indeed as the wall gets thinner, the contribution of washcoat becomes more significant in terms of thermal mass, heat transfer, thermal expansion, hydraulic diameter and structural stiffness - all of which have an impact on performance and durability. For example, the thinner the wall is, the better the light-off performance will be.
Technical Paper

Design Enhancement of the Rear Composite Structure for the 2005 Chevrolet Corvette Coupe and Z06

2005-04-11
2005-01-0467
This paper describes the design and development of the rear compartment structure of the sixth generation Corvette, C6, which starts in the 2005 model year. The improved design integrates the rear compartment packaging to address issues seen on fifth generation Corvette, C5. The molded composite fiberglass reinforced, tub and surround panels are similar to the C5. These large panels are modified to fit the new styling theme of the C6, while also addressing the packaging requirements of the updated underbody structure and exhaust system. New composite side support brackets and cross car reinforcement combine to address several desired improvements. These side support brackets are designed to package the rear audio speakers, electrical modules, wiring and cable routing while also addressing build variation and localized stiffness improvement. The side brackets support the surround panel increasing the manufacturing control of the surround panel.
Technical Paper

Determination of the noise contributions of engine surfaces

2001-04-30
2001-01-1482
One of the key elements in efforts to minimize the noise emmissionis of engines and other machinery is the knowledge of the main noise radiating surfaces and the relation between measurable surface vibration and the sound pressure. Under the name of Airborne Source Quantification (ASQ), various techniques have been developed to discretize and quantify the source strength, and noise contributions, of vibrating surface patches of machinery or vehicle components. The noise contributions of patches to the sound pressure at specific locations in the sound field or to the total radiated sound power are identified. The source strength of equivalent point sources, the acoustic transfer from the source surface to critical sound field locations and finally the sound pressure contributions of the individual patches are quantified. These techniques are not unique to engine application, but very relevant for engine development. An example is shown for an engine under artificial excitation.
Technical Paper

Development of Advanced Metallic Substrate Design for Close Coupled Converter Application

2007-04-16
2007-01-1262
The implementations of the Tier 2 and LEVII emission levels require fast catalyst light-off and fast closed loop control through high-speed engine management. The paper describes the development of innovative catalyst designs. During the development thermal and mechanical boundary conditions were collected and component tests conducted on test rigs to identify the emission and durability performance. The products were evaluated on a Super Imposed Test Setup (SIT) where thermal and mechanical loads are applied to the test piece simultanously and results are compared to accelerated vehicle power train endurance runs. The newly developed light-off catalyst with Perforated Foil Technology (PE) showed superior emission light-off characteristic and robustness.
Technical Paper

Development of Evaluation Methods for Steering Loss of Assist

2019-04-02
2019-01-1236
Loss of power steering assist (LoA) is viewed as a potential hazard in certain vehicle operational scenarios. Despite the importance of this steering failure mode, few published test protocols for the objective or subjective evaluation of vehicle performance in a loss of assist situation exist. The first part of this paper examines five of the key steering failure modes that can result in LoA and discusses why LoA persists as a key industry challenge. The second part analyzes the situational dynamics affecting vehicle controllability during a LoA event and proposes a subjective evaluation driving course that facilitates evaluations in various LoA scenarios. A corresponding objective test procedure and metric is also proposed. These evaluation methods support consistent performance evaluation of physical vehicles while also enabling the prediction of vehicle characteristics early in the vehicle development process (VDP).
Technical Paper

Development of a Luxury Vehicle Acoustic Package using SEA Full Vehicle Model

2003-05-05
2003-01-1554
Interior noise has become a significant performance attribute in modern passenger vehicles and this is extremely important in the luxury market segment where a quiet interior is the price of entry. With the elimination of early prototype vehicles to reduce development costs, high frequency analytical SEA models are used to design the vehicle sound package to meet targets for interior noise quality. This function is important before representative NVH prototypes are available, and later to support parameter variation investigations that would be cost prohibitive in a hardware test. This paper presents the application of an analytical full vehicle SEA model for the development of the acoustic package of a cross over luxury utility vehicle. The development concerns addressed were airborne powertrain noise and road noise. Power flow analysis was used to identify the major noise paths to the interior of the vehicle.
Technical Paper

Development of an Air Intake System Using Vibro-Acoustics Numerical Modeling

2001-04-30
2001-01-1519
This paper describes the use of Vibro-Acoustics numerical modeling for prediction of an Air Intake System noise level for a commercial vehicle. The use of numerical methods to predict vehicle interior noise levels as well as sound radiated from components is gaining acceptance in the automotive industry [1]. The products of most industries can benefit from improved acoustic design. On the other hand, sound emission regulation has become more and more rigorous and customers expect quieter products. The aim of this work it is to assess the Vibro-Acoustics behavior of Air Intake System and influence of it in the sound pressure level of the vehicle.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
X