Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Carbon Intensity Analysis of Hydrogen Fuel Cell Pathways

2021-03-02
2021-01-0047
A hydrogen economy is an increasingly popular solution to lower global carbon dioxide emissions. Previous research has been focused on the economic conditions necessary for hydrogen to be cost competitive, which tends to neglect the effectiveness of greenhouse gas mitigation for the very solutions proposed. The holistic carbon footprint assessment of hydrogen production, distribution, and utilization methods, otherwise known as “well-to-wheels” carbon intensity, is critical to ensure the new hydrogen strategies proposed are effective in reducing global carbon emissions. When looking at these total carbon intensities, however, there is no single clear consensus regarding the pathway forward. When comparing the two fundamental technologies of steam methane reforming and electrolysis, there are different scenarios where either technology has a “greener” outcome.
Technical Paper

A Method for Determining Mileage Accumulation for Robustness Validation of Advanced Driver Assistance Systems (ADAS) Features

2024-04-09
2024-01-1977
Robustness testing of Advanced Driver Assistance Systems (ADAS) features is a crucial step in ensuring the safety and reliability of these systems. ADAS features include technologies like adaptive cruise control, lateral and longitudinal controls, automatic emergency braking, and more. These systems rely on various sensors, cameras, radar, lidar, and software algorithms to function effectively. Robustness testing aims to identify potential vulnerabilities and weaknesses in these systems under different conditions, ensuring they can handle unexpected scenarios and maintain their performance. Mileage accumulation is one of the validation methods for achieving robustness. It involves subjecting the systems to a wide variety of real-world driving conditions and driving scenarios to ensure the reliability, safety, and effectiveness of the ADAS features.
Technical Paper

A PC and FPGA Hybrid Approach to Hardware-in-the-Loop Simulation

2004-03-08
2004-01-0904
ECU designers are seeking more flexibility from HIL test systems. Often their needs are met by the development of custom hardware, either internally or by HIL test system vendors. Many systems also rely heavily on the use of multiple expensive microprocessors to achieve the required timing and synchronization performance. This paper discusses an alternative based on PC technology and reconfigurable I/O hardware. The HIL test system designer uses a graphical programming interface to reconfigure not only the real-time software portion of the system, but also the FPGA-based I/O hardware. This increases flexibility and lowers cost by providing capabilities such as generating simulated outputs synchronized to crank angle and implementing multiple serial communication protocols.
Technical Paper

A Rational Approach to Qualifying Materials for Use in Fuel Systems

2000-06-19
2000-01-2013
About 10 years ago in the US, an automotive OEM consortium formed the Oxygenated Fuels Task Force which in turn created the SAE Cooperative Research Project Group 2 to develop a simple rational method for qualifying materials. At that time the focus was Methanol/Gasoline blends. This work resulted in SAE J1681, Gasoline/Methanol Mixtures for Materials Testing. Recently this document was rewritten to make it the single, worldwide, generic source for fuel system test fluids. The paper will describe the rationale for selecting the fuel surrogate fluids and why this new SAE standard should replace all existing test fuel or test fluid standards for fuel system materials testing.
Technical Paper

A Robust Preignition Rating Methodology: Evaluating the Propensity to Establish Propagating Flames under Real Engine Conditions

2017-10-08
2017-01-2241
In this work, an experimental and analysis methodology was developed to evaluate the preignition propensity of fuels and engine operating conditions in an SI engine. A heated glow plug was introduced into the combustion chamber to induce early propagating flames. As the temperature of the glowplug varied, both the fraction of cycles experiencing these early flames and the phasing of this combustion in the engine cycle varied. A statistical methodology for assigning a single-value to this complex behavior was developed and found to have very good repeatability. The effects of engine operating conditions and fuels were evaluated using this methodology. While this study is not directly studying the so-called stochastic preignition or low-speed preignition problem, it studies one aspect of that problem in a very controlled manner.
Technical Paper

A Study of Material Compatibility With Deionized Water

2003-03-03
2003-01-0804
Deionized (DI) water is being used for humidification and cooling on some fuel cell designs. This highly purified water is corrosive, yet the high purity is required to maintain the function and durability of the fuel cell. A study of the deionized water system was undertaken to determine the effect of various materials on water quality, and also to determine the effect of deionized water on each material. The test setup was designed to circulate fluid from a reservoir, similar to an actual application. The fluid temperature, pressure, and flow rate were controlled. The resistivity of the water was observed and recorded. Pre- and post-testing of the water and the materials was performed. The goal is to achieve system cleanliness and durability similar to a stainless steel system using lighter, less expensive materials. This paper describes the test setup, test procedures, and the overall results for the eight materials tested.
Technical Paper

A Study on the Camshaft Lobe Microstructure Obtained by Different Processing

2012-10-02
2012-36-0499
The present work aims to characterize the microstructure of valvetrain camshaft lobes that are currently applied in the automotive industry, obtained by different processing routes. The cam lobe microstructure has been assessed by microscopy, whereas the mechanical properties by hardness profile measurements on the surface region. Microconstituents type and form, composing the final microstructure at the cam lobe work region, are defined by the casting route and/or post-heat treatment process other than alloy chemical composition, so that knowledge and control of processing route is vital to assure suitable valvetrain system assembly performance and durability. Most of the mechanical solicitations on the part occur at the interface between cam and follower; the actual contact area is significantly smaller than the apparent area. As a result, the microstructure at and near the surface performs a direct role on the performance of the valvetrain, cam lobe and its counterpart.
Technical Paper

AUTOSAR on the Road

2008-10-20
2008-21-0019
The AUTomotive Open System ARchitecture (AUTOSAR) Development Partnership has published early 2008 the specifications Release 3.0 [1], with a prime focus on the overall architecture, basic software, run time environment, communication stacks and methodology. Heavy developments have taken place in the OEM and supplier community to deliver AUTOSAR loaded cars on the streets starting 2008 [2]. The 2008 achievements have been: Improving the specifications in order to secure the exploitation for body, chassis and powertrain applications Adding major features: safety related functionalities, OBD II and Telematics application interfaces.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Active Fuel Management™ Technology: Hardware Development on a 2007 GM 3.9L V-6 OHV SI Engine

2007-04-16
2007-01-1292
In the North American automotive market, cylinder deactivation by means of engine valve deactivation is becoming a significant enabler in reducing the Brake Specific Fuel Consumption (BSFC) of large displacement engines. This allows for the continued market competitiveness of large displacement spark ignition (SI) engines that provide exceptional performance with reduced fuel consumption. As an alternative to a major engine redesign, the Active Fuel Management™ (AFM™) system is a lower cost and effective technology that provides improved fuel economy during part-load conditions. Cylinder deactivation is made possible by utilizing innovative new base engine hardware in conjunction with an advanced control system. In the GM 3.9L V-6 Over Head Valve (OHV) engine, the standard hydraulic roller lifters on the engine's right bank are replaced with deactivating hydraulic roller lifters and a manifold assembly of oil control solenoids.
Technical Paper

Adding Unified Diagnostic Services over CAN to an HIL Test System

2011-04-12
2011-01-0454
The increase in the number of electronic control units (ECUs) in the modern vehicle, combined with increased software complexity and more distributed controls has led to an extreme testing challenge when it comes to the verification and validation of body-control ECUs. In general test engineers have to deal with more software configurations, more closed-loop interaction between ECUs, and more fault conditions than ever before. By adding Unified Diagnostic Services (UDS) over CAN to a Hardware-In-The-Loop (HIL) test system, Lear was able to increase test automation and provide wider test coverage by automating the ECU flashing process, adding diagnostic identifiers and trouble codes to their test scripts, and providing a quick and easy way to exercise ECU I/O. Lear chose to implement their HIL testers on the open PXI[1] hardware platform, utilizing National Instruments' VeriStand software framework.
Technical Paper

Addressing Engine ECU Testing Challenges with FPGA-Based Engine Simulation

2015-04-14
2015-01-0173
Engine ECU testing requires sophisticated sensor simulation and event capture equipment. FPGAs are the ideal devices to address these requirements. Their high performance and high flexibility are perfectly suited to the rapidly changing test needs of today's advanced ECUs. FPGAs offer significant advantages such as parallel processing, design scalability, ultra-fast pin-to-pin response time, design portability, and lifetime upgradability. All of these benefits are highly valuable when validating constantly bigger embedded software in shorter duration. This paper discusses the collaboration between Valeo and NI to define, implement, and deploy a graphical, open-source, FPGA-based engine simulation library for ECU verification.
Technical Paper

Advanced Signal Processing Algorithms for Sound and Vibration Beyond the FFT

2009-05-19
2009-01-2164
Several advanced signal processing algorithms beyond the FFT such as time-frequency analysis, quefrency, cestrum, wavelet analysis, and AR modeling uses are outlined. These advanced algorithms can solve some sound and vibration challenges that FFT-based algorithms cannot solve. Looking at signal characteristics of a unit under test in the time-frequency plane, it is possible to get a better understanding of signal characteristics. This is an overview of these algorithms and some application examples, such as speaker testing, bearing fault detection, dashboard motor testing, and engine knock detection where they can be applied to NVH applications.
Technical Paper

Aerodynamically Induced Loads on Hood Latch and Hood Retention Systems

2019-04-02
2019-01-0657
Hood latches are provided with a secondary latch mechanism in order to restrain hoods in the event of an incomplete closing operation. It is important thus to understand the aerodynamically induced loading conditions the latch and hood will be subject to in order to design the hood and hood retention system to withstand those loads. In this paper a method of collecting load and displacement data from actual vehicles is presented, as well as an analysis of the results and the implications for hood and latch design.
Technical Paper

Alternate Solution for EV Charge Point Infrastructure in Crowded Urban Areas along the Shore

2019-01-09
2019-26-0121
Many countries including India have aggressively aimed to implement electric vehicles (EVs) usage from 2030 onwards. Companies such as General Motors, Uber, Waymo and Nissan etc. are exploring the realm of autonomous vehicles (AV) for use as taxis as early as 2019. Above facts logically arrive at the solution of Autonomous EVs as taxis. With the commitment towards enabling an all-electric future, there exists a need to provide suitable infrastructure for recharging. Major urban cities located by the shoreline such as New York, Hong Kong, Mumbai, Los Angeles etc. have been facing the space crunch, with real estate prices sky-rocketing exponentially. With this premise, the operating company would need a large amount of space to store their EVs for charging which attributes to a longer downtime. This brings a need for an economical charging location that has a reduced usage of urban infrastructure and energy consumption.
Technical Paper

An Analytical Control Systems Approach to Steering Shudder

1995-05-01
951254
Historically, power steering shudder, a vibration which occurs while steering a vehicle at low speeds, has been approached with systematic component-swapping experiments. This approach was time consuming and did not necessarily yield satisfactory results. In this paper it is shown that steering shudder can be analytically approached as a control system with a closed-loop limit cycle caused by the interaction of the chassis and the steering system. This approach provides a metric for determining a vehicle's propensity to shudder and allows quick predictions of the results of changing components. The approach is model-based, and incorporates chassis and hydraulic system components. Results obtained from the control systems analysis have been validated by a vehicle study, which showed a strong correlation between subjective evaluations and the stability metric provided by the analysis.
Technical Paper

An Approach of the Engine Cylinder Block Material

2013-10-07
2013-36-0113
The increasing demand for energy savings in cars of high production volume, especially those classified as emerging market vehicles, has led the automotive industry to focus on several strategies to achieve higher efficiency levels from their systems and components. One of the most diffuse initiatives is reducing weight through the application of the so-called light alloys. An engine cylinder block can contribute nearly two percent of the vehicle's total mass. Special attention and soon repercussion are given when someone decides to apply a light alloy such as the aluminum to this component. Nonetheless, it is known that peculiarities in terms of physical, chemical and mechanical properties, due to the material nature, associated with regional market characteristics make the initial feasibility analysis study definitely one of the most important stages for the material choice decision.
Journal Article

An Efficient Implementation of the SM Agreement Protocol for a Time Triggered Communication System

2010-10-19
2010-01-2320
FlexRay is a time triggered automotive communication protocol that connects ECUs (Electronic Control Units) on which distributed automotive applications are executed. If exact agreement (e.g. on physical values measured by redundant sensors on different ECUs) must be reached in the presence of asymmetric communication faults, a byzantine agreement protocol like Signed Messages (SM) can be utilized. This paper gives examples of how byzantine faults can emerge in a FlexRay-based system and proposes optimizations for a FlexRay-specific implementation of the SM protocol. The protocol modifications allow for a reduction in the number of protocol messages under a slightly relaxed fault model, as well as for a reduction in the number of messages to be temporarily stored by the ECUs.
Technical Paper

Analysis of Hollow Hyper-Elastic Gaskets Filled with Air Using Fluid Cavity Approach

2022-10-05
2022-28-0069
Hyper-elastic seals are extensively used in automotive applications for sealing various joints in assembly. They are also used in sealing battery packs. They are used in various sizes and shapes. Most of the gaskets used are solid gaskets. Hollow gaskets are also being used. Hollow gaskets typically have a fluid like air trapped inside. Analyzing these hollow gaskets also requires involving the physics of the fluid inside. The trapped fluid affects the performance of the gasket like contact pressure and width. Objective of this study is to analyze the hollow gasket performance including the effect of air trapped inside. The effect of air on performance of the hollow seal is also studied. Fluid Cavity capability in ABAQUS was selected after literature study to simulate the effect of trapped fluid (Air) on seal performance.
Technical Paper

Application of CAEBAT System Approach for a Liquid-Cooled Automotive Battery Pack

2016-04-05
2016-01-1205
As one of many pack-level battery simulation approaches developed within the General Motors-led Computer-Aided Engineering of Automotive Batteries (CAEBAT) Phase 1 project, the system approach treats the entire battery pack as a dynamic system which includes multiple engineering disciplines for simulation. It is the most efficient approach of all the CAEBAT battery pack-level approaches in terms of computational time and resources. This paper reports the application of the system approach for a 24-cell liquid-cooled prototype battery pack. It also summarizes the verification of the approach by comparing the simulation results with the measurement data. The results using the system approach are found to have a very good agreement with the measurements.
X