Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Demonstration of Local Heat Treatment for the Preform Annealing Process

2011-04-12
2011-01-0538
The preform annealing process is a two-stage stamping method for shaping non age-hardenable (i.e. 5000 series) aluminum sheet panels in which the panel is heat treated in between the two steps to improve overall formability of the material. The intermediate annealing heat treatment eliminates the cold work accumulated in the material during the first draw. The process enables the ability to form more complex parts than a conventional aluminum stamping process. A demonstration of local annealing for this process was conducted to form a one-piece aluminum liftgate inner panel for a large sport utility vehicle using the steel product geometry without design concessions. In prior work, this process was demonstrated by placing the entire panel in a convection oven for several minutes to completely anneal the cold work.
Technical Paper

A Displacement-Approach for Liftgate Chucking Investigation

2012-04-16
2012-01-0217
A displacement-based CAE analysis is applied to liftgate chucking noise problems. A CAE simulation model of a small-size sport utility vehicle (SUV) is simulated with a set of realistic road loads as a time transient simulation. The model contains a trimmed vehicle, a liftgate and structural body-liftgate interface components such as the latch-striker wire, contact wedges and slam bumpers. Simulation design of experiments (DOE) is carried out with the model. As performance measures, the relative displacements at the contact points of the interface components are selected, since they are considered the direct cause of liftgate chucking. As design variables, body structure stiffness, liftgate stiffness, liftgate opening stiffness, stiffness characteristics of the interface components and additional liftgate mass are selected. Results of the simulation DOE is post-processed, and response surface models (RSM) are fit for the performance measures.
Technical Paper

A Methodology for Evaluating Body Architecture Concepts Using Technical Cost Modeling

2011-04-12
2011-01-0767
The ability to make accurate decisions concerning early body-in-white architectures is critical to an automaker since these decisions often have long term cost and weight impacts. We address this need with a methodology which can be used to assist in body architecture decisions using process-based technical cost modeling (TCM) as a filter to evaluate alternate designs. Despite the data limitations of early design concepts, TCM can be used to identify key trends for cost-effectiveness between design variants. A compact body-in-white architecture will be used as a case study to illustrate this technique. The baseline steel structure will be compared to several alternate aluminum intensive structures in the context of production volume.
Technical Paper

A Unified Framework of Adaptive Cruise Control for Speed Limit Follower and Curve Speed Control Function

2013-04-08
2013-01-0618
Today many vehicles are being developed with advanced computing and sensing technologies. These new technologies have contributed in enhancing driving safety and convenience. As an example, the Adaptive Cruise Control (ACC) can automatically adjust the vehicle speed to driver's set speed and maintain the driver-requested headway distance to the lead vehicle. In this paper, we further consider the automatic control of speed according to the road attributes, e.g., the speed limit and curve of the road. Two new features, ‘speed limit follower’ and ‘curve speed control’ algorithms, are proposed in this paper. These new features communicate with the conventional ACC system and control the vehicle speed while traveling across different curved roads and speed limit zones. These new features were developed as an independent function, so they can be integrated with any other existing ACC systems.
Technical Paper

ASIL Decomposition: The Good, the Bad, and the Ugly

2013-04-08
2013-01-0195
ASIL decomposition is a method described in the ISO 26262 standard for the assignment of ASILs to redundant requirements. Although ASIL decomposition appears to have similar intent to the hardware fault tolerance concept of IEC 61508-2, ASIL decomposition is not intended to reduce ASIL assignments to hardware elements for random hardware failures, but instead focuses on functions and requirements in the context of systematic failures. Based on our participation in the development of the standard, the method has been applied in different ways in practice, not all of which are fully consistent with the intent of the standard. Two potential reasons that may result in the use of “modified” ASIL algebra include the need of OEMs to partition a system and specify subsystem requirements to suppliers and the need for designers to construct systems bottom up.
Technical Paper

Air Suspension System Model and Optimization

2011-04-12
2011-01-0067
An air suspension system can consist of many different components. These components include an air compressor, air springs, pneumatic solenoid valves, height sensors, electronic control unit, air reservoir, air lines, pressure sensor, temperature sensor, etc. The system could be designed as a 2-corner rear air suspension or a 4-corner air suspension. In this paper, the pneumatic models of air suspension systems are presented. The suspension system models are implemented in AmeSim. The suspension controls are implemented using Matlab/Simulink. The compressor was modeled using the standard AmeSim element with known mass flow rate as a function of pressure ratio. Air lines were modeled using a friction submodel of pneumatic pipe and control (isolation) valves are modeled using 2 position, 2 port pneumatic servo valves. The air spring is modeled as a single pneumatic chamber, single rod jack with spring assistance to account for spring nonlinearities.
Technical Paper

An Analysis for Floating Bearings in a Turbocharger

2011-04-12
2011-01-0375
A comprehensive analysis has been performed for floating bearings applied in a turbocharger. It is found that Couette power loss for a full-floating bearing (the floating ring rotates) decreases with increasing inner and outer clearances, while its Poiseuille power loss increases with increasing inner and outer film clearances. In comparison with a semi-floating bearing (the floating ring does not rotate), a full-floating bearing can reduce both Couette and Poiseuille power losses. However, floating bearing is found to have a smaller minimum film thickness for a given dynamic loading from rotor-dynamics. The total power loss reduction for typical full-floating bearings ranges from 13% to 27%, which matches well with some published experimental data. In general, the speed ratio increases with increasing outer film clearance, while it decreases with increasing inner film clearance because of shear stresses on the outer and inner film.
Journal Article

An Analysis of Floating Piston Pin

2011-04-12
2011-01-1407
Presented in the paper is a comprehensive analysis for floating piston pin. It is more challenging because it is a special type of journal bearing where the rotation of the journal is coupled with the friction between the journal and the bearing. In this analysis, the multi-degree freedom mass-conserving mixed-EHD equations are solved to determine the coupled pin rotation and friction. Other bearing characteristics, such as minimum film thickness, pin secondary motions in both connecting-rod small-end bearing and piston pin-boss bearing, power loss etc are also determined. The mechanism for floating pin to have better scuffing resistance is discovered. The theoretical and numerical model is implemented in the GM internal software FLARE (Friction and Lubrication Analysis for Reciprocating Engines).
Technical Paper

An Experimental and Numerical Study of the Microstructural and Mechanical Properties of an Extruded Magnesium Alloy at 450 °C and Varied Strain Rates

2013-04-08
2013-01-0976
An extruded Mg-Al-Mn (AM30) magnesium alloy was subjected to uniaxial compression along the extrusion direction (ED) and the extrusion radial direction (RaD) at 450 °C and different strain rates. The microstructure and texture of the AM30 alloy under different deformation conditions were examined. Texture evolution was characterized by electron backscatter diffraction (EBSD). The activity of different deformation modes including twinning were simulated using the visco-plastic self-consistent (VPSC) and the simplistic Sachs polycrystal plasticity models. The results show that the microstructure and the mechanical property of the Mg alloy strongly depend on the strain rate, with twinning activated at strain rates >0.5 s−1. Dynamic recrystallization and twinning interacted with each other and affected the final microstructure and mechanical property of the magnesium alloy.
Technical Paper

An Integrated Approach to Requirements Development and Hazard Analysis

2015-04-14
2015-01-0274
The introduction of new safety critical features using software-intensive systems presents a growing challenge to hazard analysis and requirements development. These systems are rich in feature content and can interact with other vehicle systems in complex ways, making the early development of proper requirements critical. Catching potential problems as early as possible is essential because the cost increases exponentially the longer problems remain undetected. However, in practice these problems are often subtle and can remain undetected until integration, testing, production, or even later, when the cost of fixing them is the highest. In this paper, a new technique is demonstrated to perform a hazard analysis in parallel with system and requirements development. The proposed model-based technique begins during early development when design uncertainty is highest and is refined iteratively as development progresses to drive the requirements and necessary design features.
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
Technical Paper

Application of the Design of Experiments to Study the Sensitivity and Contribution of a Seat Back Bladder Bolster on Occupant Lateral Support Performance

2024-01-16
2024-26-0303
Automotive seat comfort systems provide occupants with a choice to adjust the seat to individual preference, enhancing the customized comfort feel. Seat comfort systems such as massager, lumbar support bladders, seat cushion bolster bladders and seat back bolster bladders are increasingly adopted in automotive seats as customer demand for customizable seats is on the rise. Development of seat comfort systems is mainly driven by Tier 1 suppliers to an automotive original equipment manufacturer (OEM). The Automotive OEM must wait until the final seat prototype is ready with all the seat comfort systems packaged to evaluate the seat comfort performance. Computer Aided Engineering (CAE) Tools like CASIMIR provide detail dummies representing humans with tissues and muscles, allowing occupant seat comfort to be predicted virtually.
Technical Paper

Application of the Homogeneous Relaxation Model to Simulating Cavitating Flow of a Diesel Fuel

2012-04-16
2012-01-1269
The internal flow in an injector is greatly affected by cavitation formation, and this in turn impacts the spray characteristics of diesel injectors. In the current work, the performance of the Homogeneous Relaxation Model (HRM) in simulating cavitation inside a diesel injector is evaluated. This model is based on the assumption of homogeneous flow, and was originally developed for flash boiling simulations. However, the model can potentially simulate the spectrum of vaporization mechanisms ranging from cavitation to flash boiling through the use of an empirical time scale which depends on the thermodynamic conditions of the injector fuel. A lower value of this time scale represents a lower deviation from thermal equilibrium conditions, which is an acceptable assumption for small-scale cavitating flows. Another important advantage is the ability of this model to be easily coupled with real fuel models.
Technical Paper

Automotive AC System Oil Migration HFO-1234yf Vs. R134a

2011-04-12
2011-01-1173
1 As global automotive manufacturers prepare for the introduction of HFO-1234yf as the low Global Warming Potential (GWP) refrigerant solution in Europe and North America concerns over compressor durability due to oil migration still remain. This preliminary study evaluates several different variables that affect oil migration. Several compressor suppliers each having their own unique oil formulation for HFO-1234yf were included. Comparisons between vehicle tests and various accelerated lab test methods are made. In R134a automotive system the thresholds that cause compressor warranty are well understood. This study will compare AC systems running with HFO-1234yf at the same time identical systems with R134a are run to understand the relative effect of HFO-1234yf versus R134a.
Journal Article

Cabin Heating and Windshield Defrosting for Extended Range Electric, Pure Electric, & Plug-in Hybrid Vehicles

2012-04-16
2012-01-0121
Conventional HVAC systems adjust the position of a temperature door, to achieve a required air temperature discharged into the passenger compartment. Such systems are based upon the fact that a conventional (non-hybrid) vehicle's engine coolant temperature is controlled to a somewhat constant temperature, using an engine thermostat. Coolant flow rate through the cabin heater core varies as the engine speed changes. EREVs (Extended Range Electric Vehicles) & PHEVs (Plug-In Hybrid Electric Vehicles) have two key vehicle requirements: maximize EV (Electric Vehicle) range and maximize fuel economy when the engine is operating. In EV mode, there is no engine heat rejection and battery pack energy is consumed in order to provide heat to the passenger compartment, for windshield defrost/defog and occupant comfort. Energy consumption for cabin heating must be optimized, if one is to optimize vehicle EV range.
Technical Paper

Cascaded Dual Extended Kalman Filter for Combined Vehicle State Estimation and Parameter Identification

2013-04-08
2013-01-0691
This paper proposes a model-based “Cascaded Dual Extended Kalman Filter” (CDEKF) for combined vehicle state estimation, namely, tire vertical forces and parameter identification. A sensitivity analysis is first carried out to recognize the vehicle inertial parameters that have significant effects on tire normal forces. Next, the combined estimation process is separated in two components. The first component is designed to identify the vehicle mass and estimate the longitudinal forces while the second component identifies the location of center of gravity and estimates the tire normal forces. A Dual extended Kalman filter is designed for each component for combined state estimation and parameter identification. Simulation results verify that the proposed method can precisely estimate the tire normal forces and accurately identify the inertial parameters.
Technical Paper

Comparisons of Current Concepts for Press Hardened Steel Tailor Welded Blanks and Tailor Rolled Blanks on Center Pillar Reinforcements

2011-04-12
2011-01-1059
Press hardened steels (PHS) are commonly used in automotive structural applications because of their combination of extremely high strength, load carrying capacity and the ability to form complex shapes in the press hardening process. Recent adoption of increased roof crush standards, side impact requirements and the increased focus on CO2 emissions and mass reduction have led autmotive manufacturers to significantly increase the amount of PHS being designed into future vehicle designs. As a way to further optimize the use of these steels, multi-gauge welded blanks of PHS and multi-material blanks of PHS to microalloyed steels of various thickness have been developed to help achieve these requirements. More recently, tailor rolled PHS, whereby the steel is rolled such that the thickness changes across the width of the sheet, have been developed.
Technical Paper

Comprehensive Overview of Human Interface for an Extended Range Electric Vehicle

2011-04-12
2011-01-1023
An Extended Range Electric vehicle brings a wealth of new features since it is capable of driving on battery alone, has a range extending engine, and has a high voltage battery pack that can be recharged by plugging into wall power. The customer is able to interact with the vehicle's plug-in charging system through mobile applications. Along with all these new features is the challenge of designing a driver interface to provide important information to the customer. This paper will describe the unique customer interface features added to the vehicle, and will include some additional specifics related to the hardware used to provide the information.
Technical Paper

Conditional Analysis of Enhanced Combustion Luminosity Imaging in a Spray-Guided Gasoline Engine with High Residual Fraction

2011-04-12
2011-01-1281
High-speed (12 kHz) imaging of combustion luminosity (enhanced by using a sodium fuel additive) has been analyzed and compared to crank angle resolved heat release rates and mass fraction burn profiles in a spray-guided spark-ignited direct-injection (SG-SIDI) optical single-cylinder engine. The addition of a sodium-containing additive to gasoline greatly increases the combustion luminosity, which allows unintensified high-speed (12 kHz) imaging of early partially premixed flame kernel growth and overall flame propagation with excellent signal-to-noise ratio for hundreds of consecutive engine cycles. Ignition and early flame kernel growth are known to be key to understanding and eliminating poor burn cycles in SG-SIDI engines.
Technical Paper

Coolant Pipe Press Fit Study

2011-04-12
2011-01-0421
Coolant pipes are a prime connection units present in any engines that facilitates the flow of coolant and thereby keeping the engine under its optimum operating condition. Among the several influencing factors that deteriorate engines performance, the coolant leak is also one of the contributors. This could be caused primly due to leakage issues that arises from the pipe press fit zones. Henceforth it is very important to understand the root cause of this press-fit connection failure. The present study deals with press-fit between the pipe and housing in an engine which is subjected to extreme thermal loads (min of -40°C to a max temperature of +150°C) thereby causing the press-fit loosening effect.
X