Refine Your Search

Topic

Author

Search Results

Technical Paper

A Fatigue Prediction Method for Spot Welded Joints

2013-04-08
2013-01-1208
Generally linear finite element analysis (FEA) is used to predict fatigue life of spot welded joints in a vehicle body structure. Therefore, the effect of plastic deformation at the vicinity of the spot welded joints is not included on fatigue prediction. This study introduces a simple technique to include the plastic deformation effect without performing elastic-plastic finite element analysis. The S-N curve obtained from fatigue test results is modified to consider this effect. Tensile strength test results of spot welded joint specimens were utilized to find the load range for FEA equivalent to the applied load range for fatigue tests. To demonstrate the proposed approach, fatigue test results of advanced high strength steels (AHSS) for lap-shear and coach peel specimens were used. Both the specimen types were tested at various constant amplitudes with the load ratios of R=0.1 and 0.3.
Technical Paper

A Statistical Approach for Correlation/Validation of Hot-Soak Terminal Temperature of a Vehicle Cabin CFD Model

2013-04-08
2013-01-0854
A Design for Six Sigma (DFSS) statistical approach is presented in this report to correlate a CFD cabin model with test results. The target is the volume-averaged hot-soak terminal temperature. The objective is to develop an effective correlation process for a simplified CFD cabin model so it can be used in practical design process. It is, however, not the objective in this report to develop the most accurate CFD cabin model that would be too expensive computationally at present to be used in routine design analysis. A 3-D CFD model of a vehicle cabin is the central part of the computer modeling in the development of automotive HVAC systems. Hot-soak terminal temperature is a thermal phenomenon in the cabin of a parked vehicle under the Sun when the overall heat transfer reaches equilibrium. It is often part of the simulation of HVAC system operation.
Technical Paper

A Study of Hybrid III 5th Percentile Female ATD Chest Accelerometers to Assess Sternum Compression Rate in Chest on Module Driver Out-of-Position Evaluations

2017-03-28
2017-01-1431
Driver out-of-position (OOP) tests were developed to evaluate the risk of inflation induced injury when the occupant is close to the airbag module during deployment. The Hybrid III 5th percentile female Anthropomorphic Test Device (ATD) measures both sternum displacement and chest acceleration through a potentiometer and accelerometers, which can be used to calculate sternum compression rate. This paper documents a study evaluating the chest accelerometers to assess punch-out loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid III - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid III - 50th percentile male ATD. A 50th percentile male Global Human Body Model (HBM) was then applied for enhanced anatomical review.
Journal Article

Adjoint Method for Aerodynamic Shape Improvement in Comparison with Surface Pressure Gradient Method

2011-04-12
2011-01-0151
Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics. One specific goal of aerodynamic shape optimization is to predict the local shape sensitivities for aerodynamic forces. The availability of a reliable and efficient sensitivity analysis method will help to reduce the number of design iterations and the aerodynamic development costs. Among various shape optimization methods, the Adjoint Method has received much attention as an efficient sensitivity analysis method for aerodynamic shape optimization because it allows the computation of sensitivity information for a large number of shape parameters simultaneously.
Technical Paper

An Approach to the Safety Design and Development of a Brake-by-Wire Control System

2011-04-12
2011-01-0212
The increasing usage of brake-by-wire systems in the automotive industry has provided manufacturers with the opportunity to improve both vehicle and manufacturing efficiency. The replacement of traditional mechanical and hydraulic control systems with electronic control devices presents different potential vehicle-level safety hazards than those presented by conventional braking systems. The proper design, development, and integration of a brake-by-wire control system requires that hazards are reasonably prevented or mitigated in order to maximize the safety of the vehicle operator, occupant(s), and passers-by.
Technical Paper

Application of Failure Plastic Strain to Quasi-Static Finite Element Analysis for Projection Weld and Strain-based Spot Weld Evaluation

2011-04-12
2011-01-1074
One of the most critical and important fracture mechanisms in a FMVSS207/210/225[1] test is the pull-thru of bolts from the body structure or spot weld separation. There are no analytically proven methods of making a judgment of pull-thru occurring except through evaluation of the plastic strain or through the thickness strain value around projection welds on Weld nut/stud bolt or spot welds. Therefore it is essential to have accurate criteria to evaluate the pull-thru. During elastic deformation, the sheet steel deforms while the quasi-static force is being applied and then returns to its original shape when the force is released. But when the force causes a stress that exceeds the yield strength, the sheet steel will permanently elongate with each additional unit of force applied, and it will not return to its original shape and size.
Technical Paper

Application of Mizenboushi (GD3) Method of Problem Prevention to Vehicle, Component and Subsystem Validation

2011-04-12
2011-01-1275
The GD₃ or GD Cubed method of problem prevention has been applied to product changes and to test results at the component, subsystem and vehicle level. GD₃ stands for Good Design - Good Discussion - Good Dissection. Good Discussion of changes (Design Review Based on Failure Mode) identifies BUDS of PROBLEMS that may arise from interfaces and areas of change. Good Dissection (Design Review Based on Test Results) is applied to physical test samples during and after tests to identify Buds of Problems that may not be obvious from inspection of the parts or test results. The paper first describes implementation of the GD₃ principles and methods supporting Good Discussion (DRBFM) and Good Dissection, and then discusses how they are applied and embedded in the Vehicle Development Process at General Motors Co.
Technical Paper

Applying Software Dependence Analysis for Automotive Embedded Software

2011-04-12
2011-01-1263
The size and complexity of embedded software in automotive systems has been increasing rapidly. This makes the analysis of such systems difficult. For instance, in many analyses it is required to trace the dependences between variables in the software. E.g., in checking compliance to On-Board Diagnostics (OBD) standards one needs to ensure that only OBD compliant data-items are used (directly or indirectly) in an algorithm that is to be OBD compliant. Similarly, for safety analysis such as Design Failure Mode Effects Analysis (DFMEA), all the inputs to a safety critical system, all inputs to them, etc., have to be found, so that failure modes associated with these can be analysed. Currently such tracing of dependences is performed manually at great cost and effort. We describe the application of a technique (and tool) that automates the tracing of software dependence.
Technical Paper

Automotive AC System Oil Migration HFO-1234yf Vs. R134a

2011-04-12
2011-01-1173
1 As global automotive manufacturers prepare for the introduction of HFO-1234yf as the low Global Warming Potential (GWP) refrigerant solution in Europe and North America concerns over compressor durability due to oil migration still remain. This preliminary study evaluates several different variables that affect oil migration. Several compressor suppliers each having their own unique oil formulation for HFO-1234yf were included. Comparisons between vehicle tests and various accelerated lab test methods are made. In R134a automotive system the thresholds that cause compressor warranty are well understood. This study will compare AC systems running with HFO-1234yf at the same time identical systems with R134a are run to understand the relative effect of HFO-1234yf versus R134a.
Technical Paper

CAE - A Strategy for a Large Scale Virtual Vehicle Engineering Factory

2011-04-12
2011-01-1065
For many years, the computer aided math model has been the foundation for lowering cost and reducing time to market for many manufacturing industries. The automotive industry applies a variety of tools and methods to evaluate the expected vehicle performance to a forever expanding set of requirements. These mathematical predictions of performance are then repeated for both a set of design cycles and a multitude of vehicles in the product portfolio. This paper presents a CAE perspective of the unique problems of the large scale virtual vehicle engineering factory and a set of solutions. Different strategies to create the various complex math models required are explored. These strategies include using COTS FEA pre-processers, producing FEA models internal to the CAD tools, as well as custom built tools, macros and process automation tools.
Technical Paper

Characterization of Mechanical Behavior of Thermoplastics with Local Deformation Measurement

2012-04-16
2012-01-0040
In quasi-static tension and compression tests of thermoplastics, full-field strain distribution on the gage section of the specimen can be captured using the two-dimensional digital image correlation method. By loading the test specimens made of a talc-filled and impact-modified polypropylene up to tensile failure and large compressive strains, this study has revealed that inhomogeneous deformation within the gage section occurs quite early for both test types. This leads to the challenge of characterizing the mechanical properties - some mechanical properties such as stress-strain relationship and fracture strain could depend on the measured section length and location. To study this problem, the true stress versus true strain curves determined locally in different regions within the gage length are compared.
Technical Paper

Conducting Tire-Coupled (4-Post) Durability Simulations without Road Load Data Acquisition

2011-04-12
2011-01-0225
For decades, the industry standard for laboratory durability simulations has been based on reproducing quantified vehicle responses. That is, build a running vehicle, measure its responses over a variety of durability road surfaces and reproduce those responses in the laboratory for durability evaluation. To bring a vehicle to market quickly, the time between tightening the last bolt on a prototype test vehicle and starting the durability evaluation test must be minimized. A method to derive 4-Post simulator displacements without measuring or predicting vehicle responses is presented.
Technical Paper

Coolant Pipe Press Fit Study

2011-04-12
2011-01-0421
Coolant pipes are a prime connection units present in any engines that facilitates the flow of coolant and thereby keeping the engine under its optimum operating condition. Among the several influencing factors that deteriorate engines performance, the coolant leak is also one of the contributors. This could be caused primly due to leakage issues that arises from the pipe press fit zones. Henceforth it is very important to understand the root cause of this press-fit connection failure. The present study deals with press-fit between the pipe and housing in an engine which is subjected to extreme thermal loads (min of -40°C to a max temperature of +150°C) thereby causing the press-fit loosening effect.
Technical Paper

Critical Success Factors of Lean Manufacturing Implementation in Automotive Industry in China

2012-04-16
2012-01-0516
Purpose - This research aimed to investigate the process of lean manufacturing implementation in automotive industry in China in order to identify the critical success factors. Design/methodology/approach - A review of relevant literature is used to identify potential critical success factors for lean manufacturing implementations. The research had targeted lean-manufacturing management, practitioners, process users, and consultants working in automotive industry in China. Data were collected with an electronic survey which included 20 close ended questions, each measured by using five-point scale, Out of total 200 questionnaire distributed, 80 useable responses were received resulting in 40 % response rate. A judgmental sampling technique had been selected. Both descriptive and inferential statistics had been used to analyze this data.
Technical Paper

DFMEA and FTA Applied to Complex Hybrid and Fuel Cell Systems

2011-04-12
2011-01-0512
One of the keys to a good reliable design is evaluating potential and past issues, ascertaining and then mitigating the risk that past and future issues will potentially occur. This is even more important with the automobile designs of today and for those in the future, specifically the hybrid and fuel cell vehicle. DFMEA and FTA are tools that aid in the understanding of complex design risks, from the system level down to the component level. This session will look at different case studies (from simple to complex) and the strategies used to understand systemic failure modes using both DFMEA and FTA.
Journal Article

Design Optimization of Front Bumper System for Low Speed Impact Insurance Industry Impact Test using DFSS and CAE Analysis

2011-04-12
2011-01-0070
In 2006, the Insurance Institute for Highway Safety (IIHS) released a new Low Speed Bumper Test Protocol for passenger cars1. The new test protocol included the development of a deformable barrier that the vehicle would impact at low speeds. IIHS positioned the new barrier to improve correlation to low speed collisions in the field, and also to assess the ability of the bumper system to protect the vehicle from damage. The bumper system must stay engaged to the barrier to protect other vehicle components from damage. The challenge is to identify the bumper system design features that minimize additional cost and mass to keep engagement to the barrier. The results of the Design for Six Sigma analysis identified the design features that increase the stiffness of the bumper system enable it to stay engaged to the barrier and reduce the deflection.
Journal Article

Determination of Weld Nugget Size Using an Inverse Engineering Technique

2013-04-08
2013-01-1374
In today's light-weight vehicles, the strength of spot welds plays an important role in overall product integrity, reliability and customer satisfaction. Naturally, there is a need for a quick and reliable technique to inspect the quality of the welds. In the past, the primary quality control tests for detecting weld defects are the destructive chisel test and peel test [1]. The non-destructive evaluation (NDE) method currently used in industry is based on ultrasonic inspection [2, 3, 4]. The technique is not always successful in evaluating the nugget size, nor is it effective in detecting the so-called “cold” or “stick” welds. Therefore, it is necessary to develop a precise and reliable noncontact NDE method for spot welds. There have been numerous studies in predicting the weld nugget size by considering the spot-weld process [5, 6].
Technical Paper

Development of Robust CAE Modeling Technique for Decklid Slam Analysis

2011-04-12
2011-01-0242
Engineering has continuously strived to improve the vehicle development process to achieve high quality designs and quick to launch products. The design process has to have the tools and capabilities to help ensure both quick to the market product and a flawless launch. To achieve high fidelity and robust design, mistakes and other quality issues must be addressed early in the engineering process. One way to detect problems early is to use the math based modeling and simulation techniques of the analysis group. The correlation of the actual vehicle performance to the predictive model is crucial to obtain. Without high correlation, the change management process begins to get complicated and costs start to increase exponentially. It is critical to reduce and eliminate the risk in a design up front before tooling begins to kick off. The push to help achieve a high rate of correlation has been initiated by engineering management, seeing this as an asset to the business.
Technical Paper

Development of Sensor Attachment Criteria (Immunity) - Side Impact Sensor Mounted on Door Impact Beam

2011-04-12
2011-01-1445
The sensor mounted on the door impact beam plays a major role in side impact events. The accelerations of side impact sensors are processed by sensing algorithms to make a decision on the air bag deployment. The sensing signal criterion for the deployable condition is a well understood process. However, the non-deployment sensing signal for the immunity to abuse conditions is a function of sensor attachment stiffness to the base structure. The base structure can be a door inner panel or door impact beam. In one of the production program, the acceleration based sensor attached to the impact beam showed immunity issues in the abusive door slams/opening to objects. Hence, the computer Aided Engineering (CAE) analysis was used to develop the sensor attachment criterion.
Technical Paper

Dimensional Quality Control of Repeated Molded Polymer Battery Cell Housings in Automotive Energy Systems

2011-04-12
2011-01-0244
Current manufacture of alternative energy sources for automobiles, such as fuel cells and lithium-ion batteries, uses repeating energy modules to achieve targeted balances of power and weight for varying types of vehicles. Specifically for lithium-ion batteries, tens to hundreds of identical plastic parts are assembled in a repeating fashion; this assembly of parts requires complex dimensional planning and high degrees of quality control. This paper will address the aspects of dimensional quality for repeated, injection molded thermoplastic battery components and will include the following: First, dimensional variation associated with thermoplastic components is considered. Sources of variation include the injection molding process, tooling or mold, lot-to-lot material differences, and varying types of environmental exposure. Second, mold tuning and cavity matching between molds for multi-cavity production will be analyzed.
X