Refine Your Search

Topic

Author

Search Results

Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Journal Article

A Computational Method for Efficient Hub Offset Comparisons with Deflected-Disc Dampers

2013-04-08
2013-01-1357
With deflected-disc dampers, digressive force-velocity shapes are achieved via the combined effects of disc stack stiffness and hub-offset. The degree of digressiveness can be adjusted to alter vehicle performance by changing the proportion of these parameters. Optimizing this relationship can yield substantial vehicle performance improvements, but the time consuming iterative process of developing a new disc stack for each hub-offset discourages experimentation. To enable more efficient digressiveness comparisons, a regression-based computational method has been developed which converts disc stack stiffness from one hub-offset to other offsets directly, without iteration. Once an initial disc stack for one offset has been tuned by traditional methods, stacks for other offsets can be calculated that maintain overall damper control.
Technical Paper

A Statistical Approach for Correlation/Validation of Hot-Soak Terminal Temperature of a Vehicle Cabin CFD Model

2013-04-08
2013-01-0854
A Design for Six Sigma (DFSS) statistical approach is presented in this report to correlate a CFD cabin model with test results. The target is the volume-averaged hot-soak terminal temperature. The objective is to develop an effective correlation process for a simplified CFD cabin model so it can be used in practical design process. It is, however, not the objective in this report to develop the most accurate CFD cabin model that would be too expensive computationally at present to be used in routine design analysis. A 3-D CFD model of a vehicle cabin is the central part of the computer modeling in the development of automotive HVAC systems. Hot-soak terminal temperature is a thermal phenomenon in the cabin of a parked vehicle under the Sun when the overall heat transfer reaches equilibrium. It is often part of the simulation of HVAC system operation.
Journal Article

Adjoint Method for Aerodynamic Shape Improvement in Comparison with Surface Pressure Gradient Method

2011-04-12
2011-01-0151
Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics. One specific goal of aerodynamic shape optimization is to predict the local shape sensitivities for aerodynamic forces. The availability of a reliable and efficient sensitivity analysis method will help to reduce the number of design iterations and the aerodynamic development costs. Among various shape optimization methods, the Adjoint Method has received much attention as an efficient sensitivity analysis method for aerodynamic shape optimization because it allows the computation of sensitivity information for a large number of shape parameters simultaneously.
Technical Paper

Air Suspension System Model and Optimization

2011-04-12
2011-01-0067
An air suspension system can consist of many different components. These components include an air compressor, air springs, pneumatic solenoid valves, height sensors, electronic control unit, air reservoir, air lines, pressure sensor, temperature sensor, etc. The system could be designed as a 2-corner rear air suspension or a 4-corner air suspension. In this paper, the pneumatic models of air suspension systems are presented. The suspension system models are implemented in AmeSim. The suspension controls are implemented using Matlab/Simulink. The compressor was modeled using the standard AmeSim element with known mass flow rate as a function of pressure ratio. Air lines were modeled using a friction submodel of pneumatic pipe and control (isolation) valves are modeled using 2 position, 2 port pneumatic servo valves. The air spring is modeled as a single pneumatic chamber, single rod jack with spring assistance to account for spring nonlinearities.
Technical Paper

An Approach to the Safety Design and Development of a Brake-by-Wire Control System

2011-04-12
2011-01-0212
The increasing usage of brake-by-wire systems in the automotive industry has provided manufacturers with the opportunity to improve both vehicle and manufacturing efficiency. The replacement of traditional mechanical and hydraulic control systems with electronic control devices presents different potential vehicle-level safety hazards than those presented by conventional braking systems. The proper design, development, and integration of a brake-by-wire control system requires that hazards are reasonably prevented or mitigated in order to maximize the safety of the vehicle operator, occupant(s), and passers-by.
Technical Paper

An Investigation of Diesel EGR Cooler Fouling and Effectiveness Recovery

2013-04-08
2013-01-0533
Diesel engine developers are continually striving to reduce harmful NOx emissions through various calibration and hardware strategies. One strategy being implemented in production Diesel engines involves utilizing cooled exhaust gas recirculation (EGR). Although there is a significant NOx reduction potential by utilizing cooled EGR, there are also several issues associated with it, such as EGR cooler fouling and a reduction in cooler effectiveness that can occur over time. The exact cause of these issues and many others related to cooler fouling are not clearly understood. One such unanswered issue or phenomenon that has been observed in both field tested and lab tested EGR coolers is that of a recovery in EGR cooler effectiveness after a shutdown or after cycling between various conditions.
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Technical Paper

Analytical Evaluation of Propulsion System Architectures for Future Urban Vehicles

2011-04-12
2011-01-0861
Today, nearly half of the world population lives in urban areas. As the world population continues to migrate to urban areas for increased economic opportunities, addressing personal mobility challenges such as air pollution, Greenhouse Gases (GHGs) and traffic congestion in these regions will become even a greater challenge especially in rapidly growing nations. Road transportation is a major source of air pollution in urban areas causing numerous health concerns. Improvements in automobile technology over the past several decades have resulted in reducing conventional vehicle tailpipe emissions to exceptionally low levels. This transformation has been attained mainly through advancements in engine and transmission technologies and through partial electrification of vehicles. However, the technological advancements made so far alone will not be able to mitigate the issues due to increasing GHGs and air pollution in urban areas.
Technical Paper

Automotive AC System Oil Migration HFO-1234yf Vs. R134a

2011-04-12
2011-01-1173
1 As global automotive manufacturers prepare for the introduction of HFO-1234yf as the low Global Warming Potential (GWP) refrigerant solution in Europe and North America concerns over compressor durability due to oil migration still remain. This preliminary study evaluates several different variables that affect oil migration. Several compressor suppliers each having their own unique oil formulation for HFO-1234yf were included. Comparisons between vehicle tests and various accelerated lab test methods are made. In R134a automotive system the thresholds that cause compressor warranty are well understood. This study will compare AC systems running with HFO-1234yf at the same time identical systems with R134a are run to understand the relative effect of HFO-1234yf versus R134a.
Technical Paper

Balance of Electrical Power Requirements through Smart Electric Power Management

2011-04-12
2011-01-0042
This paper examines Smart Electric Power Management as it pertains to when the vehicle charging system is active. Over the past decade there have been several factors at play which have stressed the demands placed upon the vehicle electrical power system. Many of these factors present challenges to electrical power that are at cross-purposes with one another. For example, demands of new and existing electrical loads, customer expectations about load performance and battery life, and the push by governments' world-wide for increased fuel economy (FE) and reduced CO2 emissions all have direct impact and can be directly impacted by decisions made in electric power design. As the electrification of the vehicle has progressed we now have much more specific vehicle state data available and the means to share this information among on-board computers through serial data link connectivity.
Journal Article

Calculation of Heating Value for Diesel Fuels Containing Biodiesel

2013-04-08
2013-01-1139
Biodiesel, a fuel comprised of mono-alkyl esters of long-chain fatty acids also known as Fatty Acid Methyl Esters(FAME), derived from vegetable oils or animal fats, has become an important commercial marketplace automotive fuel in the United States (US) and around the world over last few years. FAME biodiesels have many chemical and physical property differences compared to conventional petroleum based diesel fuels. Also, the properties of biodiesel vary based on the feedstock chosen for biodiesel production. One of the key differences between petroleum diesel fuels and biodiesel is the energy content. The energy content, or heating value, is an important property of motor fuel, since it directly affects the vehicle fuel economy. While the energy content can be measured by combustion of the fuel in a bomb calorimeter, this analytical laboratory testing is time consuming and expensive.
Technical Paper

Cascaded Dual Extended Kalman Filter for Combined Vehicle State Estimation and Parameter Identification

2013-04-08
2013-01-0691
This paper proposes a model-based “Cascaded Dual Extended Kalman Filter” (CDEKF) for combined vehicle state estimation, namely, tire vertical forces and parameter identification. A sensitivity analysis is first carried out to recognize the vehicle inertial parameters that have significant effects on tire normal forces. Next, the combined estimation process is separated in two components. The first component is designed to identify the vehicle mass and estimate the longitudinal forces while the second component identifies the location of center of gravity and estimates the tire normal forces. A Dual extended Kalman filter is designed for each component for combined state estimation and parameter identification. Simulation results verify that the proposed method can precisely estimate the tire normal forces and accurately identify the inertial parameters.
Technical Paper

Cellulosic Ethanol Fuel Quality Evaluation and its Effects on PFI Intake Valve Deposits and GDI Fuel Injector Plugging Performance

2013-04-08
2013-01-0885
The U.S. Renewable Fuel Standard 2 (RFS2) mandates the use of advanced renewable fuels such as cellulosic ethanol to be blended into gasoline in the near future. As such, determining the impact of these new fuel blends on vehicle performance is important. Therefore, General Motors conducted engine dynamometer evaluations on the impact of cellulosic ethanol blends on port fuel injected (PFI) intake valve deposits and gasoline direct injected (GDI) fuel injector plugging. Chemical analysis of the test fuels was also conducted and presented to support the interpretation of the engine results. The chemical analyses included an evaluation of the specified fuel parameters listed in ASTM International's D4806 denatured fuel ethanol specification as well as GC/MS hydrocarbon speciations to help identify any trace level contaminant species from the new ethanol production processes.
Journal Article

Challenges for Tire Noise Evaluation on Common Pavements

2011-05-17
2011-01-1582
Developing common methods of noise evaluation and facilities can present a number of challenges in the area of tire/pavement noise. Some of the issues involved include the design and construction of pavements globally, the change in pavement over time, and variation in the noise produced with standard test tires used as references. To help understand and address these issues for airborne tire/pavement noise, acoustic intensity measurement methods based on the On-board Sound Intensity (OBSI) technique have been used. Initial evaluations have included measurements conducted at several different proving grounds. Also included were measurements taken on a 3m diameter tire noise dynamometer with surfaces replicating test track pavements. Variation between facilities appears to be a function of both design/construction and pavement age. Consistent with trends in the literature, for smooth asphalt surfaces, the newest surface produced levels lower than older surfaces.
Technical Paper

Characterization of Mechanical Behavior of Thermoplastics with Local Deformation Measurement

2012-04-16
2012-01-0040
In quasi-static tension and compression tests of thermoplastics, full-field strain distribution on the gage section of the specimen can be captured using the two-dimensional digital image correlation method. By loading the test specimens made of a talc-filled and impact-modified polypropylene up to tensile failure and large compressive strains, this study has revealed that inhomogeneous deformation within the gage section occurs quite early for both test types. This leads to the challenge of characterizing the mechanical properties - some mechanical properties such as stress-strain relationship and fracture strain could depend on the measured section length and location. To study this problem, the true stress versus true strain curves determined locally in different regions within the gage length are compared.
Technical Paper

Co-Development of Chevy Volt Tire Properties to Balance Performance and Electric Vehicle Range

2011-04-12
2011-01-0096
As an innovative electric vehicle with some new approaches to energy usage and vehicle performance balance, the Chevy Volt required a special relationship between the OEM and tire supplier community. This paper details this relationship and how advanced tools and technology were leveraged between OEM and supplier to achieve tire component and overall vehicle performance results.
Technical Paper

Comparisons of Current Concepts for Press Hardened Steel Tailor Welded Blanks and Tailor Rolled Blanks on Center Pillar Reinforcements

2011-04-12
2011-01-1059
Press hardened steels (PHS) are commonly used in automotive structural applications because of their combination of extremely high strength, load carrying capacity and the ability to form complex shapes in the press hardening process. Recent adoption of increased roof crush standards, side impact requirements and the increased focus on CO2 emissions and mass reduction have led autmotive manufacturers to significantly increase the amount of PHS being designed into future vehicle designs. As a way to further optimize the use of these steels, multi-gauge welded blanks of PHS and multi-material blanks of PHS to microalloyed steels of various thickness have been developed to help achieve these requirements. More recently, tailor rolled PHS, whereby the steel is rolled such that the thickness changes across the width of the sheet, have been developed.
Technical Paper

Conditional Analysis of Enhanced Combustion Luminosity Imaging in a Spray-Guided Gasoline Engine with High Residual Fraction

2011-04-12
2011-01-1281
High-speed (12 kHz) imaging of combustion luminosity (enhanced by using a sodium fuel additive) has been analyzed and compared to crank angle resolved heat release rates and mass fraction burn profiles in a spray-guided spark-ignited direct-injection (SG-SIDI) optical single-cylinder engine. The addition of a sodium-containing additive to gasoline greatly increases the combustion luminosity, which allows unintensified high-speed (12 kHz) imaging of early partially premixed flame kernel growth and overall flame propagation with excellent signal-to-noise ratio for hundreds of consecutive engine cycles. Ignition and early flame kernel growth are known to be key to understanding and eliminating poor burn cycles in SG-SIDI engines.
X