Refine Your Search

Topic

Author

Search Results

Technical Paper

A Bursting Failure Criterion for Tube Hydroforming

2002-03-04
2002-01-0794
Fundamental differences exist between sheet metal forming and hydroforming processes. Sheet metal forming is basically a one step metal fabrication process. Almost all plastic deformation of an originally flat blank is introduced when the punch is moved normal to a clamped sheet metal. Hydroforming, however, consists of multiple steps of tube making, pre-bending, crushing, pressurization, etc. Each of the above mentioned steps can introduce permanent plastic deformations. The forming limit diagram obtained for sheet metal forming may or may not be used in hydroforming evaluations. A failure criterion is proposed for predicting bursting failures in tube hydroforming. The tube material's stress-strain curve, obtainable from uniaxial tensile test and subjected to some postulations under large stress/strain states, is used in judging the failure.
Technical Paper

A Parametric Approach for Rapid Design and Analysis of Automotive HVAC Defrost Systems

2001-03-05
2001-01-0584
The overall vision of this project was to develop a new technology that will be an enabler to reduce design and development time of HVAC systems by an order of magnitude. The objective initially was to develop a parametric model of an automotive HVAC Windshield Defrost Duct coupled to a passenger compartment. It can be used early on in the design cycle for conducting coarse packaging studies by quickly exploring “what-if” design alternatives. In addition to the packaging studies, performance of these design scenarios can be quickly studied by undertaking CFD simulation and analyzing flow distribution and windshield melting patterns. The validated geometry and CFD models can also be used as knowledge building tools to create knowledge data warehouses or repositories for precious lessons learned.
Technical Paper

A Predictive Process for Spring Failure Rates in Automotive Parts Applications

1991-02-01
910356
This paper discusses an analytical technique for computing the failure rate of steel springs used in automotive part applications. Preliminary computations may be performed and used to predict spring failure rates quickly at a very early stage of a product development cycle and to establish program reliability impact before commitment. The analytical method is essentially a combination of various existing procedures that are logically sequenced to compute a spring probability of failure under various operational conditions. Fatigue life of a mechanical component can be computed from its S-N curve. For steels, the S-N curve can be approximated by formulae which describe the fatigue life as a function of its endurance limit and its alternating stress. Most springs in service are preloaded and the actual stress fluctuates about a mean level. In order to compute an equivalent alternating stress with zero mean, an analytical method based on the Goodman Diagram is used.
Technical Paper

Advances in Complex Eigenvalue Analysis for Brake Noise

2001-04-30
2001-01-1603
Brake squeal has been analyzed by finite elements for some time. Among several methods, complex eigenvalue analysis is proving useful in the design process. It requires hardware verification and it falls into a simulation process. However, it is fast and it can provide guidance for resolving engineering problems. There are successes as well as frustrations in implementing this analysis tool. Its capability, robustness and reliability are closely examined in many companies. Generally, the low frequency squealing mechanism is a rotor axial direction mode that couples the pads, rotor, and other components; while higher frequency squeal mainly exhibits a rotor tangential mode. Design modifications such as selection of rotor design, insulator, chamfer, and lining materials are aimed specifically to cure these noise-generating mechanisms. In GM, complex eigenvalue analysis is used for brake noise analysis and noise reduction. Finite element models are validated with component modal testing.
Technical Paper

Aeroacoustics of an Automotive A-Pillar Raingutter: A Numerical Study with the Ffowcs-Williams Hawkings Method

2005-05-16
2005-01-2492
A numerical simulation of the flow structure around an idealized automotive A-pillar rain-gutter and the sound radiated from it is reported. The idealized rain-gutter is an infinitesimally thin backward facing elbow mounted on a flat plate. It is kept in a virtual wind-tunnel with rectangular cross-section. The transient flow structure around the rain-gutter is described and time-averaged pressure distribution along the base plate is provided. Time-varying static pressure was recorded on every grid point on the base-plate as well as the rain-gutter surfaces and used to calculate sound pressure signal at a microphone held above the rain-gutter using the Ffowcs-Williams-Hawkings (FWH) integral method was used for calculating sound propagation. Both the transient flow simulation as well as the FWH sound calculation were performed using the commercial CFD code FLUENT6.1.22.
Technical Paper

Aerodynamic Development of a Successful NASCAR Winston Cup Race Car

1994-12-01
942521
This paper describes the methodology used to achieve optimum aerodynamic performance of the 1989 through 1994 Chevrolet Lumina Winston Cup race car, and demonstrates the continuous improvements successfully used to respond to rule changes and competition. The development will be documented from construction of a prototype race car, through one third scale model testing, and the detail development required to continually improve performance and meet changing body rules which stringently limit body modifications. Despite these limitations, track and wind tunnel testing of development vehicles contributed to driver's and manufacturer's championships in the first racing season. The continuous improvement process, which includes ongoing wind tunnel and track tests, has resulted in improvement or at least maintenance of drag coefficient along with lift coefficient reduction of up to 0.050 each year.
Technical Paper

Application of Hydroformed Aluminum Extrusions to Vehicle Sub-Frame with Varied Wall Thickness

1999-09-28
1999-01-3180
In a typical hydroforming operation, a round tube of constant wall thickness is bent into the overall shape desired for the final part, then placed between a pair of dies. Despite some small percentage of stretch that may occur as the tube expands, the wall thickness in the original tube is therefore substantially constant at all points. In some circumstances, a part is locally thickened or reinforced for extra strength. Normally, this is achieved by using a separate piece of reinforcement at selected location. In this paper, it is intended to present a unique method to achieve an optimal structural design allowing thin or thick gages where required along its cross-section. This is done via hydroforming an aluminum extrusion tube to an optimal frame structure having varied wall thickness to satisfy various loading requirements at a minimum weight. The engine cradle is used as an example to demonstrate this methodology.
Technical Paper

Application of Variation Simulation in Body Assembly Process Design

2001-10-16
2001-01-3064
Build variation has long been recognized as one of the most important factors in vehicle performance. In this study an elastic assembly simulation program is used to guide a wheelhouse assembly process design to reduce build variation. Five (5) different clamping schemes are evaluated through the simulation program. From the five proposed process design choices, the best assembly process was identified, which results in reduced assembly variation and less tooling and manufacturing costs. Two different variation simulation approaches, one based on perturbation and the other based on Design of Experiments, were used to predict the assembly variation. Good agreement between the two approaches provided a validity check for the simulation tool.
Technical Paper

Application of a Constrained Layer Damping Treatment to a Cast Aluminum V6 Engine Front Cover

2005-05-16
2005-01-2286
Constrained Layer Damping (CLD) treatments have long provided a means to effectively impart damping to a structure [1, 2 and 3]. Traditionally, CLD treatments are constructed of a very thin polymer layer constrained by a thicker metal layer. Because the adhesion of a thin polymer layer is very sensitive to surface finish, surfaces that a CLD treatment can be effectively applied to have historically been limited to those that are very flat and smooth. New developments in material technology have provided thicker materials that are very effective and less expensive to apply when used as the damping layer in a CLD treatment. This paper documents the effectiveness of such a treatment on a cast aluminum front cover for a V6 engine. Physical construction of the treatment, material properties and design criteria will be discussed. Candidate applications, the assembly process, methods for secondary mechanical fastening will be presented.
Technical Paper

Automotive Noise and Vibration Control Practices in the New Millennium

2003-05-05
2003-01-1589
The approaches used to develop an NVH package for a vehicle have changed dramatically over the last several years. New noise and vibration control strategies have been introduced, new materials have been developed, advanced testing techniques have been implemented, and sophisticated computer modeling has been applied. These approaches help design NVH solutions that are optimized for cost, performance, and weight. This paper explains the NVH practices available for use in designing vehicles for the new millennium.
Technical Paper

Balanced Latin Hypercube Sampling for Stochastic Simulations of Spot Welds

2004-03-08
2004-01-1534
In performing stochastic simulations using computer models, the method of sampling is important. It affects the quality and the convergence speed of the results. This paper discusses one special case: sampling of spot-weld locations from potentially thousands of spot welds on a vehicle body. This study is prompted by the need of evaluating the effect of missed spot welds on the structural integrity, identifying critical welds, and optimizing weld locations. A balanced random sampling algorithm based on the concept of Latin-Hypercube sampling is developed for this application. We also present a case study in which the efficiency of three different sampling methods is compared using a car joint stiffness example. The new method, called the Balanced Latin-Hypercube Sampling (BLHS), has shown significantly faster convergence over the other two.
Technical Paper

Biomechanical Basis for the CRABI and Hybrid III Child Dummies

1997-11-12
973317
A family of adult and child size dummies was developed under the direction of two task groups of the SAE Mechanical Human Simulation Subcommittee of the Human Biomechanics and Simulation Standards Committee. These new child size dummies represent fiftieth percentile children who are 6 months, 12 months, 18 months, 3 years, and 6 years old. The sizes and total body weights of the dummies were based on detailed anthropometry studies of children of these ages. The techniques used to establish the segment masses and the resulting design goals are detailed. Appropriate impact response requirements were scaled from the biofidelity response requirements of the Hybrid III, taking into account the differences in size, mass and elastic modulus of bone between adults and children. The techniques used to establish the biomechanical impact response requirements for the child dummies are discussed and the resulting biomechanical impact response requirements are given.
Technical Paper

CHEVROLET TURBOGLIDE TRANSMISSION

1958-01-01
580019
TURBOGLIDE is the deluxe automatic transmission of the General Motors Chevrolet. One of its most important features is that its performance ratio is available at any throttle position, enabling control of torque ratio and engine output by the throttle pedal. The system includes a five-element torque converter, pump, three turbines, and the dual stator. The entire installed unit weighs 148 lb, a result of the general arrangement and the use of aluminum in the case and bell housing. The authors discuss the basic operating principle of the transmission, the arrangement, performance, torque distribution, control system, and valve body.
Technical Paper

Combining DFSS and Multi-body Dynamics for Vehicle Ride Tuning

2007-04-16
2007-01-0586
A methodology involving Design for Six Sigma (DFSS) and Multi-body dynamic simulation is employed to tune a body-on-frame vehicle, for improved ride (shake) performance. The design space is limited to four sets of symmetric body mounts for a vehicle. The stiffness and damping characteristics of the mounts are the control factors in the virtual experiment. Variation of these design parameters from the nominal settings, as well as axle size, tire and wheel combinations, tire pressure, shock damping, and vehicle speed constitute the noise factors. This approach proves to be an excellent predictor of the vehicle behavior, by which much insight as to influence of each parameter on vehicle performance is gained. Ultimately, specific recommendations for the control factor settings are provided. Subsequent hardware builds show excellent agreement with the analytical model and suggested tuning.
Journal Article

Composite Thermal Model for Design of Climate Control System

2014-04-01
2014-01-0687
We propose a composite thermal model of the vehicle passenger compartment that can be used to predict and analyze thermal comfort of the occupants of a vehicle. Physical model is developed using heat flow in and out of the passenger compartment space, comprised of glasses, roof, seats, dashboard, etc. Use of a model under a wide variety of test conditions have shown high sensitivity of compartment air temperature to changes in the outside air temperature, solar heat load, temperature and mass flow of duct outlet air from the climate control system of a vehicle. Use of this model has subsequently reduced empiricism and extensive experimental tests for design and tuning of the automatic climate control system. Simulation of the model allowed several changes to the designs well before the prototype hardware is available.
Technical Paper

Computational Flow Analysis of Brake Cooling

1997-02-24
971039
Air flow around the front brake assembly was computed using STAR-CD version 2.300, a commercial Computational Fluid Dynamics (CFD) code in order to explore the possibility of using this technique as a design tool. The primary objective in a brake corner assembly design is to maximize air cooling of the brake rotor. It is a very challenging task that requires experiments that are both expensive and time consuming in order to evaluate and optimize the various design possibilities. In this study, it is demonstrated that the design procedure can be shortened and made less expensive and be accurate using flow simulations. Accordingly, the air flow around the front brake assembly was computed for three different designs and for three different car speeds. A computational mesh was built using PROSTAR, the STAR-CD pre and post-processor. The three-dimensional mesh had almost 900,000 cells. All geometrical components were modelled.
Technical Paper

Counter-Gravity Casting Process for Making Thinwall Steel Exhaust Manifolds

1997-02-24
970920
Casting technology developmentshave led to a manufacturing process that allows the casting of thin wall (2-3mm) heat resistant ferritic stainless steel exhaust manifolds which can replace stamped and tubular weldments as well as iron castings where temperature requirements are increased. This casting process combines the thin wall and clean metal benefits of the counter gravity, vacuum-assist casting process using thin, light-weight bonded sand molds supported by vacuum-ridgidized sand. This combination is called the LSVAC (Loose Sand Vacuum Assisted Casting) process, a patented process. This process will significantly contribute to the growth of near-net shape steellstainless steel castings for automotive and allied industries. For exhaust manifolds, a modified grade of ferritic stainless steel with good oxidation resistance to 950°C in high dew point synthetic exhaust gas atmospheres was developed.
Technical Paper

Developing Hydrogen (H2) Specification Guidelines for Proton Exchange Membrane (PEM) Fuel Cell Vehicles

2005-04-11
2005-01-0011
In 1999, the Society of Automotive Engineers established the Fuel Cell Standards Committee (FCSC). The Committee is organized in subcommittees that address issues such as Interface, Hydrogen (H2) Quality, Safety, Performance, Emissions and Fuel Consumption, Recycling and Terminology. Since its inception the SAE/FCSC has published several recommended practices, which have drawn the attention of national and international organizations. These include SAE J2578 (Fuel Cell Vehicle Safety), SAE J2600 (Compressed H2 Surface Vehicle Refueling Devices), and SAE J2594 (Recyclability of Fuel Cell Systems). The need for having one common grade of hydrogen for all US commercial hydrogen-refueling stations for FCVs was the reason to establish the H2 Quality Task Force (HQTF) in late 2003. At the present time there is no representative US-national or international standard addressing the quality of hydrogen fuel that is acceptable for fuel cell vehicles.
Technical Paper

Development of the 2001 Pontiac Aztek Body Structure

2000-03-06
2000-01-1343
This paper documents the development process of the 2001 Pontiac Aztek body structure for improved noise & vibration performance. Successful vehicle development under an accelerated timing schedule demands clearly defined body structure vibration performance targets and critical dependence on the math based modeling process. Specifications for global body structure vibration performance were generated through a two step process. First, a benchmarking activity was undertaken to comprehend competitive vehicle performance. Secondly, a frequency domain “mode map” was constructed to minimize vehicle subsystem interaction. Computer simulation models were developed to predict the body structure performance. A coarse full body structure model was used to define body structure section size and joint requirements. Detailed analysis models of body joint areas were used to synthesize the joint design.
Technical Paper

Dual Fan Alternator Design Analysis

1996-02-01
960272
Component operating temperatures affect both the reliability and performance of automotive alternators. It is desirable to keep the rectifier bridge and regulator temperatures below 175 C because of the semiconductors contained in this area. At temperatures greater than this, expected lifespans have been observed to decay exponentially [1]. The air flow field surrounding an alternator and component temperature fields were investigated with Computational Fluid Dynamics (CFD) simulations. The objectives of the simulations were to examine the velocity field for the flow passage and the temperature fields for the components. Design proposals have been made to improve the air flow and to reduce the operating temperature. An initial investigation was performed by setting an alternator in a test configuration and applying the appropriate heat generation for each component. The high temperatures in the alternator components occurred in the stator and the rectifier.
X