Refine Your Search

Topic

Author

Search Results

Technical Paper

1958 Chevrolet LEVEL AIR SUSPENSION

1958-01-01
580049
CHEVROLET has made its new air-suspension system easily interchangeable in production line assembly with standard full-coil suspension by adopting a 4-link-type rear suspension with short and long arms. A feature of the system is the mounting of the leveling valves within the air-spring assemblies. These valves correct riding height continually at a moderate rate, regardless of whether the springs are leveling or operating in ride motion. The system provides constant frequency ride—ride comfort remains the same whether the car is occupied by the driver alone or is fully loaded.
Technical Paper

A Bursting Failure Criterion for Tube Hydroforming

2002-03-04
2002-01-0794
Fundamental differences exist between sheet metal forming and hydroforming processes. Sheet metal forming is basically a one step metal fabrication process. Almost all plastic deformation of an originally flat blank is introduced when the punch is moved normal to a clamped sheet metal. Hydroforming, however, consists of multiple steps of tube making, pre-bending, crushing, pressurization, etc. Each of the above mentioned steps can introduce permanent plastic deformations. The forming limit diagram obtained for sheet metal forming may or may not be used in hydroforming evaluations. A failure criterion is proposed for predicting bursting failures in tube hydroforming. The tube material's stress-strain curve, obtainable from uniaxial tensile test and subjected to some postulations under large stress/strain states, is used in judging the failure.
Technical Paper

A Predictive Process for Spring Failure Rates in Automotive Parts Applications

1991-02-01
910356
This paper discusses an analytical technique for computing the failure rate of steel springs used in automotive part applications. Preliminary computations may be performed and used to predict spring failure rates quickly at a very early stage of a product development cycle and to establish program reliability impact before commitment. The analytical method is essentially a combination of various existing procedures that are logically sequenced to compute a spring probability of failure under various operational conditions. Fatigue life of a mechanical component can be computed from its S-N curve. For steels, the S-N curve can be approximated by formulae which describe the fatigue life as a function of its endurance limit and its alternating stress. Most springs in service are preloaded and the actual stress fluctuates about a mean level. In order to compute an equivalent alternating stress with zero mean, an analytical method based on the Goodman Diagram is used.
Technical Paper

A Sampling System for the Measurement of PreCatalyst Emissions from Vehicles Operating Under Transient Conditions

1993-03-01
930141
A proportional sampler for vehicle feedgas and tailpipe emissions has been developed that extracts a small, constant fraction of the total exhaust flow during rapid transient changes in engine speed. Heated sampling lines are used to extract samples either before or after the catalytic converter. Instantaneous exhaust mass flow is measured by subtracting the CVS dilution air volume from the total CVS volume. This parameter is used to maintain a constant dilution ratio and proportional sample. The exhaust sample is diluted with high-purity air or nitrogen and is delivered into Tedlar sample bags. These transient test cycle weighted feedgas samples can be collected for subsequent analysis of hydrocarbons and oxygenated hydrocarbon species. This “mini-diluter” offers significant advantages over the conventional CVS system. The concentration of the samples are higher than those collected from the current CVS system because the dilution ratio can be optimized depending on the fuel.
Journal Article

Analysis of Contamination Protection for Brake Rotor

2016-09-18
2016-01-1930
Contamination protection of brake rotors has been a challenge for the auto industry for a long time. As contamination of a rotor causes corrosion, and that in turn causes many issues like pulsation and excessive wear of rotors and linings, a rotor splash protection shield became a common part for most vehicles. While the rotor splash shield provides contamination protection for the brake rotor, it makes brake cooling performance worse because it blocks air reaching the brake rotor. Therefore, balancing between contamination protection and enabling brake cooling has become a key critical factor when the splash shield is designed. Although the analysis capability of brake cooling performance has become quite reliable, due to lack of technology to predict contamination patterns, the design of the splash protection shield has relied on engineering judgment and/or vehicle tests. Optimization opportunities were restricted by cost and time associated with vehicle tests.
Technical Paper

Anti-Lacerative Windshield Materials; Field Evaluation by General Motors

1984-02-01
840391
This paper describes a test of 2500 General Motors passenger cars equipped with anti-lacerative windshields and driven in rental fleets. It also de840391 scribes the laboratory tests conducted prior to the fleet installation of the test windshields. Evaluation of haze development caused by abrasion of the anti-lacerative surface will take several more years of exposure. Other test results have been encouraging, except for the difficulties encountered in the removal of stickers and decals from the inner surface.
Technical Paper

Chemiluminescence Measurements of Homogeneous Charge Compression Ignition (HCCI) Combustion

2006-04-03
2006-01-1520
A spectroscopic diagnostic system was designed to study the effects of different engine parameters on the chemiluminescence characteristic of HCCI combustion. The engine parameters studied in this work were intake temperature, fuel delivery method, fueling rate (load), air-fuel ratio, and the effect of partial fuel reforming due to intake charge preheating. At each data point, a set of time-resolved spectra were obtained along with the cylinder pressure and exhaust emissions data. It was determined that different engine parameters affect the ignition timing of HCCI combustion without altering the reaction pathways of the fuel after the combustion has started. The chemiluminescence spectra of HCCI combustion appear as several distinct peaks corresponding to emission from CHO, HCHO, CH, and OH superimposed on top of a CO-O continuum. A strong correlation was found between the chemiluminescence light intensity and the rate of heat release.
Technical Paper

Comparison of OEM Automatic Transmission Fluids in Industry Standard Tests

2007-10-29
2007-01-3987
As a result of raised awareness regarding the proliferation of individual OEM recommended ATFs, and discussion in various forums regarding the possibility of ‘universal’ service fill fluids, it was decided to study how divergent individual OEM requirements actually are by comparing the fluids performance in industry standard tests. A bench-mark study was carried out to compare the performance of various OEM automatic transmission fluids in selected industry standard tests. All of the fluids evaluated in the study are used by certain OEMs for both factory and service fill. The areas evaluated included friction durability, oxidation resistance, viscosity stability, aeration and foam control. The results of this study are discussed in this paper. Based on the results, one can conclude that each ATF is uniquely formulated to specific OEM requirements.
Technical Paper

Correlating Lube Oil Filtration Efficiencies with Engine Wear

1988-10-01
881825
The level of filtration in an engine can have a significant impact on wear rates due to abrasive particles. Tests were conducted to establish a relationship between the level of filtration and abrasive engine wear. Although the tests were run in a laboratory environment, wear was reduced by as much as 70% by going from a 40 micron filter to a 15 micron filter. Testing was performed on a heavy duty diesel engine and later with an automotive gasoline engine. The results from both engines were consistent and showed that the relationship developed can be applied to nearly any internal combustion recipricating engine.
Technical Paper

Counter-Gravity Casting Process for Making Thinwall Steel Exhaust Manifolds

1997-02-24
970920
Casting technology developmentshave led to a manufacturing process that allows the casting of thin wall (2-3mm) heat resistant ferritic stainless steel exhaust manifolds which can replace stamped and tubular weldments as well as iron castings where temperature requirements are increased. This casting process combines the thin wall and clean metal benefits of the counter gravity, vacuum-assist casting process using thin, light-weight bonded sand molds supported by vacuum-ridgidized sand. This combination is called the LSVAC (Loose Sand Vacuum Assisted Casting) process, a patented process. This process will significantly contribute to the growth of near-net shape steellstainless steel castings for automotive and allied industries. For exhaust manifolds, a modified grade of ferritic stainless steel with good oxidation resistance to 950°C in high dew point synthetic exhaust gas atmospheres was developed.
Technical Paper

Development of a PEM Fuel Cell System for Vehicular Application

1992-08-01
921541
Allison Gas Turbine Division of General Motors is performing the first phase of a multiphase development project aimed at demonstrating an electric vehicle based on a proton exchange membrane (PEM) fuel cell. This work is sponsored by the Office of Transportation Technologies of the U.S. Department of Energy (DoE) through the DoE's Chicago Field Office (Contract No. DE-AC02-90CH10435). This work complements major efforts under way to produce electric vehicles for reducing pollution in key urban areas. Battery powered vehicles will initially satisfy niche markets where limited range vehicles can meet commuter needs. The PEM fuel cell/battery hybrid using methanol as fuel potentially offers an extremely attractive option to increasing the range, payload, and/or performance of battery powered vehicles.
Technical Paper

Diesel Exhaust Odor Its Evaluation and Relation to Exhaust Gas Composition

1957-01-01
570050
TECHNIQUES, based on panel estimates, were developed for evaluating the odor and irritation intensities of undiluted diesel-engine exhaust gases or of various dilutions of these gases in air. Along with the estimates, chemical analyses were made to determine the concentrations of total aldehydes, formaldehyde, and oxides of nitrogen. Statistically significant correlations were found between odor or irritation intensity estimates and the analytical data, but these correlations were too weak to permit accurate prediction of odor or irritation from chemical analyses. Effects of some engine variables on diesel odor were studied. Possible means of reducing diesel odor are discussed.
Technical Paper

Eco-labels and Eco-Indices. Do They Make Sense?

2000-04-26
2000-01-1473
Life Cycle Assessments (LCA) of complex systems, such as vehicles and vehicle components, are based on the quantification of the energy, wastes, and emissions associated with the material production, manufacturing, use and end of life of the product. However, the volume of information needed to provide a comprehensive assessment of the environmental burdens is large and complicates the decision process in choosing among alternatives. For this reason people have attempted to simplify the information by collapsing it into a single index, which essentially assigns a score to a product of being “good” or “bad”. Even though such an approach looks attractive to the decision-makers that want simple answers based on meaningful data, the results may be misleading.
Technical Paper

Effect of Simulated Material Properties and Residual Stresses on High Cycle Fatigue Prediction in a Compacted Graphite Iron Engine Block

2010-04-12
2010-01-0016
Casting, machining and structural simulations were completed on a V8 engine block made in Compacted Graphite Iron (CGI) for use in a racing application. The casting and machining simulations generated maps of predicted tensile strength and residual stress in the block. These strength and stress maps were exported to a finite element structural model of the machined part. Assembly and operating loads were applied, and stresses due to these loads were determined. High cycle fatigue analysis was completed, and three sets of safety factors were calculated using the following conditions: uniform properties and no residual stress, predicted properties and no residual stress, and predicted properties plus residual stress.
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Dibutyl Maleate and Tripropylene Glycol Monomethyl Ether Diesel Fuel Additives to Lower NOx Emissions

2005-04-11
2005-01-0475
A previous paper reported (SAE Paper 2002-01-2884) that it was possible to decrease mode-weighted NOx emissions compared to the OEM calibration with corresponding increases in particulate matter (PM) emissions. These PM emission increases were partially overcome with the use of oxygenated diesel fuel additives. We wanted to know if compounds of toxicological concern were emitted more or less using oxygenated diesel fuel additives that were used in conjunction with a modified engine operating strategy to lower engine-out NOx emissions. Emissions of toxicologically relevant compounds from fuels containing triproplyene glycol monomethyl ether and dibutyl maleate were the same or lower compared to a low sulfur fuel (15 ppm sulfur) even under engine operating conditions designed to lower engine-out NOx emissions.
Technical Paper

Evaluation of a High Speed, High Resolution Gas Chromatography Instrument for Exhaust Hydrocarbon Speciation

2005-04-11
2005-01-0683
The ozone forming potential (OFP) and specific reactivity (SR) of tailpipe exhaust are among the factors that determine the environmental impact of a motor vehicle. OFP and SR measurements require a lengthy determination of about 190 non-methane hydrocarbon species. A rapid gas chromatography (GC) instrument has been constructed to separate both the light (C2 - C4) and the midrange (C5 - C12) hydrocarbons in less than 10 minutes. The limit of detection is about 0.002 parts per million carbon (ppmC). Thirty exhaust samples from natural gas vehicles (NGV's) were analyzed to compare the rapid GC method with the standard GC method, which required 40-minute analyses on two different instruments. In general, evaluation of the commercial prototype from Separation Systems, Inc., indicates that a high speed, high resolution gas chromatograph can meet the need for fast, efficient exhaust hydrocarbon speciation.
Technical Paper

From Painted “Scrap” to Painted Production Parts

2000-03-06
2000-01-0024
Saturn currently injection molds and paints PPE+PA66 exterior body panels in its Spring Hill, TN facility. These manufacturing operations result in a continuous stream of waste material that needs to be responsibly and economically managed. This paper will summarize the process that General Motors and Saturn used to evaluate and validate the use of post-industrial painted PPE+PA66 reprocessed material in Saturn and General Motors' wheel trim applications (wheel covers). Not only did this project increase the amount of recycled content in General Motors' vehicles, but it also provided Saturn Corporation with a favored outlet for an internal waste stream.
Technical Paper

Front Suspension Multi-Axis Testing

1987-11-01
872255
A front suspension laboratory test procedure was developed to reproduce time-correlated fatigue damaging events from a light truck road durability test. Subsequently, the performance of front suspension systems for the GMT 400 light truck program were evaluated in terms of customer reliability. Both prototype and pilot testing, as well as computer modeling, were used in the evaluation.
Technical Paper

Fuel Economy Trends and Catalytic Devices

1974-02-01
740594
In 1968, a major oil company cancelled its annual automobile economy run after sponsoring it for 18 consecutive years -presumably due to lack of interest from the public and the press. Almost coincident with that cancellation was the beginning of production automobile exhaust emission control on a national basis and a downward inflection in the historic trend of automobile fuel economy. In contrast, the past year has seen a major revival of interest, by both the public and the press, in fuel economy. In the next few weeks, the nation will be introduced to a new direction in automotive exhaust emission control which will profoundly affect the fuel economy trend. Perhaps equally, or even more important, the next few months are expected to see major national decisions on future automobile emission control which will likely have a significant influence on the direction taken by automobile fuel economy a few years hence.
Technical Paper

General Motors DEXRON®-VI Global Service-Fill Specification

2006-10-16
2006-01-3242
During early 2005 General Motors released a newly developed ATF for the factory fill of all GM Powertrain stepped gear automatic transmissions. The new fluid provided significantly improved performance in terms of friction durability, viscosity stability, aeration and foam control and oxidation resistance. In addition, the fluid has the potential to enable improved fuel economy and extended drain intervals. Since the performance of the new fluid far exceeded that of the DEXRON®-III service fill fluids available at the time it became necessary to upgrade the DEXRON® service fill specification in order to ensure that similar fluids were available in the market for service and repair situations. This latest upgrade to the service fill specification is designated DEXRON®-VI [1].
X