Refine Your Search

Topic

Author

Search Results

Technical Paper

A Closed Loop Method for Vehicle Instrument Cluster Test Automation

2019-04-02
2019-01-1250
Instrument Panel Cluster (IPC), is a key ECU in vehicles. As IPC is a visual product, testing the software features of IPC is highly manual effort. Software Testing constitutes for approx. 35% of the total Software Development Life Cycle (SDLC). High focus on quick to market, shorter SDLC coupled with manual validation environment poses a challenge of increasing testing efficiency and improving software quality. This challenge drove the need to investigate a solution to automate the testing process and cut down the huge manual effort that goes into validating an Instrument Panel Cluster (IPC) software. The proposed intrusive and non-intrusive approaches to automate the testing process of IPC software employs a Frame Grabbing technique for the former approach and a Camera based technique for the latter. Both the approaches are robust, reliable, and scalable and covers the major portion of Vehicle Instrument cluster test scenarios.
Technical Paper

A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

2018-04-03
2018-01-0557
Knowledge of the tire slip ratio can greatly improve vehicle longitudinal stability and its dynamic performance. Most conventional slip ratio observers were mainly designed based on input of non-driven wheel speed and estimated vehicle speed. However, they are not applicable for electric vehicles (EVs) with four in-wheel motors. Also conventional methods on speed estimation via integration of accelerometer signals can often lead to large offset by long-time integral calculation. Further, model uncertainties, including steady state error and unmodeled dynamics, are considered as additive disturbances, and may affect the stability of the system with estimated state error. This paper proposes a novel slip ratio observer based on input-to-state stability (ISS) method for electric vehicles with four-wheel independent driving motors.
Technical Paper

A Parametric Sensitivity Study of Predicted Transient Abuse Loads for Sizing Electric Drive-Unit and Driveline Components

2022-03-29
2022-01-0680
The design and development of electric vehicles involves many unique challenges. One such challenge involves accurately predicting driveline abuse torque loads early in the design cycle to aid with sizing drive-unit and driveline components. Since electrified drivelines typically lack a torque-limiting “fuse” element such as a torque converter or slipping clutch, they can be vulnerable to sudden transient events involving high wheel acceleration or deceleration. Component sizing must account for the loads caused by such events, and these loads must be accurately quantified early on when vehicle parameters haven’t been finalized yet. Early load predictions can be made by completing abuse maneuver simulations where key parameters are varied to gauge their influence on simulated loads. Understanding how these parameters impact loads allows for better risk assessment during the design process, as these parameters will inevitably change until a final design is iterated upon.
Technical Paper

An Automated Procedure for Implementing Steer Input during Ditch Rollover CAE Simulation

2022-10-05
2022-28-0365
Vehicle manufacturers conduct tests to develop crash sensing system calibrations. Ditch fall-over is one of a suite of laboratory tests used to develop rollover sensing calibrations that can trigger deployment of safety devices like roof rail airbags and seat belt pretensioners. The ditch fall-over test simulates a flat road followed by a ditch on one side of the road. The vehicle heads into the ditch and the driver applies swift steer input once the ditch slope is sensed. Typically, the steer input is applied when the two down-slope wheels on the ditch side enter the ditch. Multi-Body Dynamics (MBD) software can be used for virtual simulation of these test events. Conventionally in simulations, the vehicle-model is run without steer input and the marking line crossing time is observed/manually recorded from observation of simulation video. This recorded time is used to apply the steer input and the full event is then re-simulated.
Technical Paper

An Efficient Modeling Approach for Mid-frequency Trim Effects

2011-05-17
2011-01-1719
In traditional FE based structure-borne noise analysis, interior trims are normally modeled as lump masses in the FE structure model and acoustic specific impedance of the trim is assigned to the FE acoustics model when necessary. This simplification has proven to be effective and sufficient for low frequency analysis. However, as the frequency goes into the mid-frequency range, the elastic behavior of the trim may impose some effects on the structural and acoustic responses. The approach described in this paper is based on the structural FE and acoustic SEA coupling analysis developed by ESI, aiming to improve the modeling efficiency for a possible quick turnaround in virtual assessments.
Technical Paper

Analysis of Energy-Efficient Management of a Light-Duty Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2011-09-11
2011-24-0080
The paper presents the main results of a study on the simulation of energy efficient management of on-board electric and thermal systems for a medium-size passenger vehicle featuring a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. A set of advanced technologies has been considered on the basis of very aggressive fuel economy targets: base-engine downsizing and friction reduction, combustion optimization, active thermal management, enhanced aftertreatment and downspeeding. Mild-hybridization has also been added with the goal of supporting the downsized/downspeeded engine performance, performing energy recuperation during coasting phases and enabling smooth stop/start and acceleration. The simulation has implemented a dynamic response to the required velocity and manual gear shift profiles in order to reproduce real-driver behavior and has actuated an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM).
Technical Paper

Analytical Failure Modeling of Thermal Interface Material in High Voltage Battery Modules in Electric Vehicle Crash Scenario

2023-04-11
2023-01-0521
Battery Electric Vehicles (BEVs) are becoming more competitive day by day to achieve maximum peak power and energy requirement. This poses challenges to the design of Thermal Interface Material (TIM) which maintains the cell temperature and ensure retention of cell and prevent electrolyte leak under different crash loads. TIM can be in the form of adhesives, gels, gap fillers. In this paper, TIM is considered as structural, and requires design balance with respect to thermal and mechanical requirements. Improving structural strength of TIM will have negative impact on its thermal conductivity; hence due care needs to be taken to determine optimal strength that meets both structural and thermal performance. During various crash conditions, due to large inertial force of cell and module assembly, TIM is undertaking significant loads on tensile and shear directions. LS-DYNA® is used as simulation solver for performing crash loading conditions and evaluate structural integrity of TIM.
Technical Paper

Analytical Method to Predict Floor Console Lid Latch Rattle Acoustic Noise

2023-04-11
2023-01-0873
This paper is a continuation of previously published technical paper SAE 2022-01-0314. The preceding work described an analytical methodology to predict the vehicle interior trim squeak and rattle issues upfront in the design cycle using a “relative displacement” or “contact force” metric; the methodology was implemented on the center floor console armrest latch using a linear finite element model. The work is logically extended to predict the squeak and rattle issues quantitatively using now an “acoustic noise” metric, this enables a direct comparison with the physical test results and helps to further refine the design best practices. This approach combines Finite Element Method (FEM) and Boundary Element Method (BEM) to estimate structural vibration response and acoustic sound pressure respectively.
Journal Article

Application of Brake System Failed State Performance and Reliability Requirements to Brake System Architecting

2021-10-11
2021-01-1267
The modern braking system in the field today may be controlled by over a million lines of computer code and may feature several hundred moving parts. Although modern brake systems generally deliver performance, even with partial failures present in the system, that is well above regulatory minimums, they also have a level of complexity that extends well beyond what the authors of existing regulations had envisioned. Complexity in the braking system is poised for significant increases as advanced technologies such as self-driving vehicles are introduced, and as multiple systems are linked together to provide vehicle-level “features” to the driver such as deceleration (which can invoke service braking, regenerative braking, use of the parking brake, and engine braking). Rigorous safety-case analysis is critical to bring a new brake system concept to market but may be too tedious and rely on too many assumptions to be useful in the early architecting stages of new vehicle development.
Technical Paper

Approaches for Developing and Evaluating Emerging Partial Driving Automation System HMIs

2024-04-09
2024-01-2055
Level 2 (L2) partial driving automation systems are rapidly emerging in the marketplace. L2 systems provide sustained automatic longitudinal and lateral vehicle motion control, reducing the need for drivers to continuously brake, accelerate and steer. Drivers, however, remain critically responsible for safely detecting and responding to objects and events. This paper summarizes variations of L2 systems (hands-on and/or hands-free) and considers human drivers’ roles when using L2 systems and for designing Human-Machine Interfaces (HMIs), including Driver Monitoring Systems (DMSs). In addition, approaches for examining potential unintended consequences of L2 usage and evaluating L2 HMIs, including field safety effect examination, are reviewed. The aim of this paper is to guide L2 system HMI development and L2 system evaluations, especially in the field, to support safe L2 deployment, promote L2 system improvements, and ensure well-informed L2 policy decision-making.
Technical Paper

Automation in Simulation Process: Simplifying the Complexity in Vehicle Design

2018-04-03
2018-01-0471
General Motors (GM) vehicle design operations group has envisioned that all designers and Design Engineers (DEs) should be able to analyze simple and single components and produce robust subsystem parts to support full vehicle system analysis. This vision is achieved by developing the Smart Simulation Tool (SST) within the Siemens NX CAD system. This tool empowers the designers to take charge of simple parts and produce high quality parts first time. This tool will also make both design and engineering analysis organizations at General Motors more efficient and productive. This paper describes the Smart Simulation Tool that was developed to automate the pre and post processing tasks of the Siemens NX Advanced Simulation process. Generally, the simulation process consumes a lot of designer’s time for building the Finite Element Analysis (FEA) models, typically one to two hours and is very tedious and has the potential for errors.
Technical Paper

Cascaded Dual Extended Kalman Filter for Combined Vehicle State Estimation and Parameter Identification

2013-04-08
2013-01-0691
This paper proposes a model-based “Cascaded Dual Extended Kalman Filter” (CDEKF) for combined vehicle state estimation, namely, tire vertical forces and parameter identification. A sensitivity analysis is first carried out to recognize the vehicle inertial parameters that have significant effects on tire normal forces. Next, the combined estimation process is separated in two components. The first component is designed to identify the vehicle mass and estimate the longitudinal forces while the second component identifies the location of center of gravity and estimates the tire normal forces. A Dual extended Kalman filter is designed for each component for combined state estimation and parameter identification. Simulation results verify that the proposed method can precisely estimate the tire normal forces and accurately identify the inertial parameters.
Technical Paper

Characterization and Modeling of Instrument Panel Textile Trim Materials for Passenger Airbag Deployment Analysis

2023-04-11
2023-01-0930
Premium instrument panels (IPs) contain passenger airbag (PAB) systems that are typically comprised of a stiff plastic substrate and a soft ‘skin’ material which are adhesively bonded. During airbag deployment, the skin tears along the scored edges of the door holding the PAB system, the door opens, and the airbag inflates to protect the occupant. To accurately simulate the PAB deployment dynamics during a crash event all components of the instrument panel and the PAB system, including the skin, must be included in the model. It has been recognized that the material characterization and modeling of the skin tearing behavior are critical for predicting the timing and inflation kinematics of the airbag. Even so, limited data exists in the literature for skin material properties at hot and cold temperatures and at the strain rates created during the airbag deployment.
Journal Article

Characterization of Seat Lateral Support as a Mechanical Behavior

2020-04-14
2020-01-0870
Seat lateral support is often talked about as a design parameter, but usually in terms of psychological perception. There are many difficulties in quantifying lateral support mechanically to the engineering teams: Anthropometric variation causes different people to interact with the seat in different places and at different angles, BPD studies are usually planar and don’t distinguish between horizontal support and vertical resistance to sinking in, most mechanical test systems are typically single-DOF and can’t apply vertical and horizontal loads concurrently, and there is scant literature describing the actual lateral loads of occupants. In this study, we characterize the actual lateral loading on example seating from various sized/shaped occupants according to dynamic pressure distribution. From this information, a six-DOF load and position control test robot (KUKA OccuBot) is used to replicate that pressure distribution.
Technical Paper

Composite Dash Panel Insulation Characterization and Modelling Methodology for Virtual Simulations

2022-03-29
2022-01-0278
Felt-based dash panel insulation materials have traditionally been used as a sound barrier between the engine and passenger compartments in a vehicle to reduce the transmission of engine noise to the occupant space. Their structural performance has been mainly ignored due to the typically low stiffness and strength characteristics. Consequently, studies of the acoustic properties of these materials have been found in literature while no information was found on their mechanical behavior especially in dynamic loading conditions. More stringent requirements for occupant and pedestrian safety imposed by government regulations and the position of these materials in the impact zones of pedestrian head impact have brought attention to the material contribution to the energy absorption during the impact and the need to assess the mechanical properties of these materials.
Technical Paper

Conducting Comparisons of Multi-Body Dynamics Solvers with a Goal of Establishing Future Direction

2023-04-11
2023-01-0166
As passenger vehicle design evolves and accelerates, the use of multi-body dynamics solvers has proven to be invaluable in the engineering workflow. MBD solvers allow engineers to build virtual vehicle models that can accurately simulate vehicle responses and calculate internal forces, which previously could only be assessed using physical prototype builds with hundreds of measurement transducers. Evaluation and selection of solvers within an engineering environment is inherently a multi-dimensional activity that can include ease of use, retention of previously developed expertise, accuracy, speed, and integration with existing analysis processes. We discuss here some of the challenges present in developing capability and accumulating data to support each of these criteria. Developing a pilot model that is capable of being applied to a comprehensive set of use cases, and then verifying those use cases, required significant project management activity.
Journal Article

Conjugate Heat Transfer CFD Analysis of an Oil Cooled Automotive Electrical Motor

2020-04-14
2020-01-0168
This study brings to forefront the analysis capability of CFD for the oil-cooling of an Electric-Motor (E-Motor) powering an automobile. With the rapid increase in electrically powered vehicle, there is an increasing need in the CFD modeling community to perform virtual simulations of the E-Motors to determine the viability of the designs and their performance capabilities. The thermal predictions are extremely vital as they have tremendous impact on the design, spacing and sizes of these motors. In this paper, with the Simerics, Inc. software, Simerics-MP+®, a complete three dimensional CFD with conjugate heat transfer CHT model of an Electric Motor, including all the important parts like the windings, rotor and stator laminate, endrings etc. is created. The multiphase Volume of Fluid (VOF) approach is used to model the oil flow inside this motor.
Technical Paper

Corroborative Evaluation of the Real-World Energy Saving Potentials of InfoRich Eco-Autonomous Driving (iREAD) System

2020-04-14
2020-01-0588
There has been an increasing interest in exploring the potential to reduce energy consumption of future connected and automated vehicles. People have extensively studied various eco-driving implementations that leverage preview information provided by on-board sensors and connectivity, as well as the control authority enabled by automation. Quantitative real-world evaluation of eco-driving benefits is a challenging task. The standard regulatory driving cycles used for measuring exhaust emissions and fuel economy are not truly representative of real-world driving, nor for capturing how connectivity and automation might influence driving trajectories. To adequately consider real-world driving behavior and potential “off-cycle” impacts, this paper presents four collaborative evaluation methods: large-scale simulation, in-depth simulation, vehicle-in-the-loop testing, and vehicle road testing.
Technical Paper

Crash-induced Loads in Liftgate Latching Systems

2018-04-03
2018-01-1333
Automotive liftgate latches have been subject to regulation for minimum strength and inertial resistance requirements since the late 1990’s in the US and globally since the early 2000’s, possibly due to liftgate ejections stemming from the first generation Chrysler minivans which employed latches that were not originally designed with this hazard in mind. Side door latches have been regulated since the 1960’s, and the regulation of liftgate, or back door latches, have been based largely on side door requirements, with the exception of the orthogonal test requirement that is liftgate specific. Based on benchmarking tests of liftgate latches, most global OEM’s design their latches to exceed the minimum regulatory requirements. Presumably, this is based on the need to keep doors closed during crashes and specifically to do so when subjected to industry standard tests.
Technical Paper

Design and Implementation of a Distributed Thermal Control System for Power Electronics Components in Hybrid Vehicles

2019-04-02
2019-01-0501
Hybrid electric vehicles and battery electric vehicles (BEV) use power electronics (PE) devices to convert between high voltage DC power of the battery and other formats of power. These PE components requires operation within certain temperature range, otherwise, overheating causes component as well as vehicle performance degradation. Therefore, a thermal management system is required for PE components. This paper focuses on the design and development of such a PE components thermal control system. The proposed control system is a distributed thermal control system in which all the PE components are placed in series within one cooling loop. The advantage of the proposed control system is its reduced system complexity, energy efficiency and flexibility to add future PE components. In addition, electric control unit (ECU) are utilized so that complex control algorithms can be implemented.
X