Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Journal Article

3D Coverage Control and Target Orientation Alignment Using Unmanned Ground Vehicle with Onboard Camera Sensor

2023-04-11
2023-01-0693
This paper addresses a three dimensional (3D) mission domain coverage control problem combined with camera pose control to align towards specific objects of interest. We consider an unmanned ground vehicle (UGV) based on a unicycle kinematics model with an onboard camera sensor based on a visual perspective sensor model. The coverage control problem has been researched in large part for planar domains, which is however not sufficient for real world applications for UGV navigation. Furthermore, in contrast to coverage control of points in the environment, when dealing with objects of interest, it is more amicable to consider that there exist certain orientations to which the camera must align itself to properly cover the object and make ‘sense’ of it. Hence, we seek to derive both UGV coverage control law for 3D mission domains and onboard camera pose control considering target orientation.
Technical Paper

4WID/4WIS Electric Vehicle Modeling and Simulation of Special Conditions

2011-09-13
2011-01-2158
This paper introduces the characteristics of the 4 wheel independent driving/4 wheel independent steering (4WID/4WIS) electric vehicle (EV). Models of Subsystems and the vehicle are constructed based on Matlab/simulink. The vehicle model allows the inputs of different drive torques and steer angles of four wheels. The dynamic characteristics of drive motors and steer motors are considered, and also it can reflect the vehicle longitudinal dynamics change due to the increase of the mass and inertia of the four wheels. Besides, drive mode selection function that is unique to this type vehicle is involved. Simulations and analyses of crab, oblique driving and zero radius turning which are the special conditions of 4WID/4WIS EV are conducted. The results show that the model can reflect the dynamic response characteristics. The model can be used to the simulation analyses of handling, stability, energy saving and control strategies verification of 4WID/4WIS EVs.
Technical Paper

A 3-D CFD Investigation of Ball Bearing Weir Geometries and Design Considerations for Lubrication

2024-04-09
2024-01-2439
The study focuses on understanding the air and oil flow characteristics within a ball bearing during high-speed rotation, with a particular emphasis on optimizing frictional heat dissipation and oil lubrication methods. Computational fluid dynamics (CFD) techniques are employed to analyze the intricate three-dimensional airflow and oil flow patterns induced by the motion of rotating and orbiting balls within the bearing. A significant challenge in conducting three-dimensional CFD studies lies in effectively resolving the extremely thin gaps existing between the balls, races, and cages within the bearing assembly. In this research, we adopt the ball-bearing structured meshing strategy offered by Simerics-MP+ to meticulously address these micron-level clearances, while also accommodating the rolling and rotation of individual balls. Furthermore, we investigate the impact of different designs of the lubrication ports to channel oil to other locations compared to the ball bearings.
Technical Paper

A 3-D CFD Study of the Lubricating Oil Flow Path in a Hybrid Vehicle Transmission System

2024-04-09
2024-01-2635
Effective design of the lubrication path greatly influences the durability of any transmission system. However, it is experimentally impossible to estimate the internal distribution of the automotive transmission fluid (ATF) to different parts of the transmission system due to its structural complexities. Hybrid vehicle transmission systems usually consist of different types of bearings (ball bearings, thrust bearings, roller bearings, etc.) in conjunction with gear systems. It is a perennial challenge to computationally simulate such complicated rotating systems. Hence, one-dimensional models have been the state of the art for designing these intricate transmission systems. Though quantifiable, the 1D models still rely heavily on some testing data. Furthermore, HEVs (hybrid electric vehicles) desire a more efficient lubrication system compared to their counterparts (Internal combustion engine vehicles) to extend the range of operation on a single charge.
Technical Paper

A Braking Force Distribution Strategy in Integrated Braking System Based on Wear Control and Hitch Force Control

2018-04-03
2018-01-0827
A braking force distribution strategy in integrated braking system composed of the main braking system and the auxiliary braking system based on braking pad wear control and hitch force control under non-emergency braking condition is proposed based on the Electronically Controlled Braking System (EBS) to reduce the difference in braking pad wear between different axles and to decrease hitch force between tractors and trailers. The proposed strategy distributes the braking force based on the desired braking intensity, the degree of the braking pad wear and the limits of certain braking regulations to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers. Computer co-simulations of the proposed strategy are performed.
Technical Paper

A Closed Loop Method for Vehicle Instrument Cluster Test Automation

2019-04-02
2019-01-1250
Instrument Panel Cluster (IPC), is a key ECU in vehicles. As IPC is a visual product, testing the software features of IPC is highly manual effort. Software Testing constitutes for approx. 35% of the total Software Development Life Cycle (SDLC). High focus on quick to market, shorter SDLC coupled with manual validation environment poses a challenge of increasing testing efficiency and improving software quality. This challenge drove the need to investigate a solution to automate the testing process and cut down the huge manual effort that goes into validating an Instrument Panel Cluster (IPC) software. The proposed intrusive and non-intrusive approaches to automate the testing process of IPC software employs a Frame Grabbing technique for the former approach and a Camera based technique for the latter. Both the approaches are robust, reliable, and scalable and covers the major portion of Vehicle Instrument cluster test scenarios.
Technical Paper

A Comparison of a Semi-Active Inerter and a Semi-Active Suspension

2010-10-05
2010-01-1903
Inerters have become a hot topic in recent years, especially in vehicle, train, and building suspension systems. The performance of a passive inerter and a semi-active inerter was analyzed and compared with each other and it showed that the semi-active inerter has much better performance than the passive inerter, especially with the Hybrid control method. Eight different layouts of suspensions were analyzed with a quarter car model in this paper. The adaptation of dimensionless parameters was considered for a semi-active suspension and the semi-active inerters. The performance of the semi-active inerter suspensions with different layouts was compared with a semi-active suspension with a conventional parallel spring-damper arrangement. It shows a semi-active suspension, with more simple configuration and lower cost, has similar or better compromise between ride and handling than a semi-active inerter with the Hybrid control.
Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

A Computational Fluid Dynamics (CFD) Model for Gear Churning

2018-04-03
2018-01-0401
This paper presents a computational fluid dynamics (CFD) model for predicting power losses associated with churning of oil by gears or other similar rotating components. The modeling approach and parameters are optimized to ensure the accuracy, robustness, and computational efficiency of these predictions. These studies include a look at two types of mesh and a turbulence model selection. The focus is on multiple reference frame (MRF) modeling technique for its computational efficiency advantage. Model predictions are compared to previously published experimental data [1] under varying operating conditions typical for an automotive transmission application. The model shows good agreement with the hardware both quantitatively and qualitatively, capturing the trends with speed and submersion level. The paper concludes with presenting some key lessons learned, and recommendation for future work to ultimately build a highly reliable tool as part of the virtual product development.
Technical Paper

A Control Algorithm for Low Pressure - EGR Systems Using a Smith Predictor with Intake Oxygen Sensor Feedback

2016-04-05
2016-01-0612
Low-pressure cooled EGR (LP-cEGR) systems can provide significant improvements in spark-ignition engine efficiency and knock resistance. However, open-loop control of these systems is challenging due to low pressure differentials and the presence of pulsating flow at the EGR valve. This research describes a control structure for Low-pressure cooled EGR systems using closed loop feedback control along with internal model control. A Smith Predictor based PID controller is utilized in combination with an intake oxygen sensor for feedback control of EGR fraction. Gas transport delays are considered as dead-time delays and a Smith Predictor is one of the conventional methods to address stability concerns of such systems. However, this approach requires a plant model of the air-path from the EGR valve to the sensor.
Technical Paper

A Diesel Engine Emission System Based on Brownian Diffusion a Separation

2021-04-06
2021-01-0583
Diesel engine exhaust poses an ongoing threat to human health as well as to the environment. Automotive exhaust treatment systems have been developed over the years to reduce the large amount of diesel particulate matter (DPM) released to the atmosphere. Current systems can be categorized as selective catalytic reduction, catalytic converters, and diesel particulate filters. This study presents an emission system that focuses on the removal of exhaust particles using Brownian diffusion of DPM toward fog drops followed by cyclonic separation of DPM rich fog drops. The experimental system consisted of a 13.2 kW diesel engine, heat exchanger to cool the exhaust to saturation temperature, ultrasonic fogger, cyclone separator, and recovery of waste particulate. Representative emission tests have been performed at five different diesel engine speeds and corresponding crankshaft loads.
Technical Paper

A Digital Design Agent for Ground Vehicles

2024-04-09
2024-01-2004
The design of transportation vehicles, whether passenger or commercial, typically involves a lengthy process from concept to prototype and eventual manufacture. To improve competitiveness, original equipment manufacturers are continually exploring ways to shorten the design process. The application of digital tools such as computer-aided-design and computer-aided-engineering, as well as model-based computer simulation enable team members to virtually design and evaluate ideas within realistic operating environments. Recent advances in machine learning (ML)/artificial intelligence (AI) can be integrated into this paradigm to shorten the initial design sequence through the creation of digital agents. A digital agent can intelligently explore the design space to identify promising component features which can be collectively assessed within a virtual vehicle simulation.
Technical Paper

A Direct 1D/3D (GT-SUITE/SimericsMP+) Coupled Computational Approach to Study the Impact of Engine Oil Pan Sloshing on Lubrication Pump Performance

2020-04-14
2020-01-1112
During a vehicle drive cycle, the oil in the engine oil pan sloshes very vigorously due to the acceleration of the vehicle. This can cause the pickup tube in the engine oil pan to become uncovered from oil and exposed to air, which affects the lubrication pump performance. Engine oil pan sloshing is inherently a 3D problem as the free oil surface is constantly changing. Multi-dimensional Computational Fluid Dynamics (CFD) methods are very useful to simulate such problems with high detail and accuracy but are computationally very expensive. Part of the engine lubrication system, such as the pump, can be modelled in 1D which can predict accurate results at relatively high computational speeds. By utilizing the advantages of both 1D and 3D CFD models, a coupled 1D-3D simulation approach has been developed to capture the detailed oil sloshing phenomenon in SimericsMP+ and the system level simulation is conducted in GT-SUITE where 3D spatial data is not required.
Technical Paper

A Driving Simulator Study of Young Driver’s Behavior under Angry Emotion

2019-04-02
2019-01-0398
The driving behaviors of young drivers under the influence of anger are analyzed by driving simulator in this paper. A total of 12 subjects are enrolled during the experiment. Standardized videos are utilized to induce the driver's anger emotion. And the driver's electrocardiogram (ECG) signal is collected synchronously and compared before and after emotional trigger, which prove the validity of emotional trigger. Based on the result, the driver's driving performance under the straight road and the curve under normal state and angry state are compared and analyzed. The results of independent sample t-test show that there are significant differences in the running time of straight sections and the standard deviation of steering wheel angle in curves between normal and angry states. In conclusion, the longitudinal and lateral operation of drivers is unstable in angry state and the driver will be more destructive to the regular driving behavior.
Technical Paper

A Finite Element Design Study and Performance Evaluation of an Ultra-Lightweight Carbon Fiber Reinforced Thermoplastic Composites Vehicle Door Assembly

2020-04-14
2020-01-0203
The ever-growing concern to reduce the impact of transportation systems on environment has pushed automotive industry towards fuel-efficient and sustainable solutions. While several approaches have been used to improve fuel efficiency, the light-weighting of automobile components has proven broadly effective. A substantial effort is devoted to lightweighting body-in-white which contributes ~35% of total weight of vehicle. Closure systems, however, have been often overlooked. Closure systems are extremely important as they account for ~ 50% of structural mass and have a very diverse range of requirements, including crash safety, durability, strength, fit, finish, NVH, and weather sealing. To this end, a carbon fiber-reinforced thermoplastic composite door is being designed for an OEM’s mid-size SUV, that enables 42.5% weight reduction. In this work, several novel composite door assembly designs were developed by using an integrated design, analysis and optimization approach.
Technical Paper

A First Look at Android Automotive Privacy

2023-04-11
2023-01-0037
Android Automotive OS (AAOS) has been gaining popularity in recent years, with several OEMs across the world already deploying it or planning to in the near future. Besides the benefit of a well-known, customizable and secure operating system for OEMs, AAOS allows third-party app developers to offer their apps on vehicles of several manufacturers at the same time. Currently, there are 55 apps for AAOS that can be categorized as media, navigation or point-of-interest apps. Specifically the latter two categories allow the third-parties to collect certain sensor data directly from the vehicle. Furthermore, the latest version of AAOS also allows the OEM to configure and collect In-Vehicle Infotainment (IVI) and vehicle data (called OEM telemetry). However, increasing connectivity and integration with the in-vehicle network comes at the expense of user privacy. Previous works have shown that vehicular sensor data often contains personally identifiable information (PII).
Technical Paper

A Functional Decomposition Approach for Feature-Based Reference Architecture Modeling

2021-04-06
2021-01-0259
Variant modeling techniques have been developed to allow systems engineers to model multiple similar variants in a product line as a single variant model. In this paper, we expand on this past work to explore the extent to which variant modeling in SysML can be applied to a broad range of dissimilar systems, covering the entire domain of ground vehicles, in single reference architecture model. Traditionally, a system’s structure is decomposed into subsystems and components. However, this method is found to be ineffective when modeling variants that are functionally similar but structurally different. We propose to address this challenge by first decomposing the system not only by subsystem but also by high-level function. This pattern is particularly useful for situations where two variants perform the same function, but one variant performs the function using one subsystem, whereas the other variant performs the same function using one or more different subsystems.
Technical Paper

A Fuzzy On-Line Self-Tuning Control Algorithm for Vehicle Adaptive Cruise Control System with the Simulation of Driver Behavior

2009-04-20
2009-01-1481
Research of Adaptive Cruise Control (ACC) is an important issue of intelligent vehicle (IV). As we all known, a real and experienced driver can control vehicle's speed very well under every traffic environment of ACC working. So a direct and feasible way for establishing ACC controller is to build a human-like longitudinal control algorithm with the simulation of driver behavior of speed control. In this paper, a novel fuzzy self-tuning control algorithm of ACC is established and this controller's parameters can be tuned on-line based on the evaluation indexes that can describe how the driver consider the quality of dynamical characteristic of vehicle longitudinal dynamics. With the advantage of the controller's parameter on-line self-tuning, the computational workload from matching design of ACC controller is also efficiently reduced.
Technical Paper

A Heuristic Supervisory Controller for a 48V Hybrid Electric Vehicle Considering Fuel Economy and Battery Aging

2019-01-15
2019-01-0079
Most studies on supervisory controllers of hybrid electric vehicles consider only fuel economy in the objective function. Taking into consideration the importance of the energy storage system health and its impact on the vehicle’s functionality, cost, and warranty, recent studies have included battery degradation as the second objective function by proposing different energy management strategies and battery life estimation methods. In this paper, a rule-based supervisory controller is proposed that splits the torque demand based not only on fuel consumption, but also on the battery capacity fade using the concept of severity factor. For this aim, the severity factor is calculated at each time step of a driving cycle using a look-up table with three different inputs including c-rate, working temperature, and state of charge of the battery. The capacity loss of the battery is then calculated using a semi-empirical capacity fade model.
X