Refine Your Search

Topic

Search Results

Technical Paper

Advanced, Lightweight, Space Suit Primary Life Support System for Mars Exploration

2001-07-09
2001-01-2167
Hamilton Sundstrand Space Systems International (HSSSI) has been conducting an internal research and development study of an integrated portable life support system design for advanced exploration missions. This design combines several new subsystem and component concepts to achieve dramatic reductions in system weight and consumables and increased reliability and safety. The study includes the design and manufacture of subsystems and components and the assembly and test of an integrated bench top system prototype. The system design and the results of testing and analysis are described.
Technical Paper

Assessment of Technology Readiness Level of a Carbon Dioxide Reduction Assembly (CRA) for Use on International Space Station

2004-07-19
2004-01-2446
When technologies are traded for incorporation into vehicle systems to support a specific mission scenario, they are often assessed in terms of “Technology Readiness Level” (TRL). TRL is based on three major categories of Core Technology Components, Ancillary Hardware and System Maturity, and Control and Control Integration. This paper describes the Technology Readiness Level assessment of the Carbon Dioxide Reduction Assembly (CRA) for use on the International Space Station. A team comprising of the NASA Johnson Space Center, Marshall Space Flight Center, Southwest Research Institute and Hamilton Sundstrand Space Systems International have been working on various aspects of the CRA to bring its TRL from 4/5 up to 6. This paper describes the work currently being done in the three major categories. Specific details are given on technology development of the Core Technology Components including the reactor, phase separator and CO2 compressor.
Technical Paper

Catalyst Development for the Space Station Water Processor Assembly

2002-07-15
2002-01-2362
Hamilton Sundstrand Space Systems International (HSSSI) is currently under contract with NASA MSFC to design, fabricate and deliver the Water Processor Assembly (WPA) for the International Space Station (ISS). As part of this effort HSSSI has developed an oxidation catalyst for the catalytic reactor assembly in the WPA. This paper discusses full-scale development reactor testing and the status of the life testing of the oxidation catalyst used in the reactor.
Technical Paper

Design and Operation of a Low Pressure Electrolyzer (LPE) for Submarine Applications

2001-07-09
2001-01-2441
A Low Pressure Electrolyzer (LPE) is being developed to provide metabolic oxygen aboard US nuclear submarines. The system is derived from a more complex system already developed for the Virginia Class of attack submarines. The LPE generates up to 250 standard cubic feet per hour (SCFH) of oxygen at ambient pressure through electrolysis of water utilizing SPE® (Solid Polymer Electrolyte) technology. The hydrogen is generated at pressures suitable for disposal overboard. The system operates unattended which minimizes crew workload, and can safely shut down without crew intervention. Generating oxygen at ambient pressure significantly reduces risk to personnel and greatly simplifies the system. Reliability, maintainability, safety, and ease of operation are major system design drivers.
Technical Paper

Development Status and Maintainability Features of ISS Oxygen Generation and Water Processor Assemblies

2001-07-09
2001-01-2314
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene waste waters. The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization.
Technical Paper

Development Status and Safety Features of ISS Oxygen Generation and Water Processor Assemblies

2000-07-10
2000-01-2349
Hamilton Sundstrand Space Systems International, Inc. HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene waste waters. The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recover System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization.
Technical Paper

Development Status of ISS Water Processor Assembly

2002-07-15
2002-01-2363
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) for the International Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene wastewaters. All planned development testing has been completed and this paper provides the status of the development activities and results for the WPA.
Technical Paper

Development Status of the ISS Oxygen Generation Assembly and Key Components

2002-07-15
2002-01-2269
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop, an Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization. Initially, the hydrogen will be vented overboard to space vacuum. The OGA has been under development at HSSSI for 3 years. This paper will update last year's ICES paper on the design/development of the OGA.
Technical Paper

Development Status of the VPCAR Water Processor Assembly

2003-07-07
2003-01-2626
The purification of waste water is a critical element of any long-duration space mission. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system offers the promise of a technology requiring low quantities of expendable material that is suitable for exploration missions. NASA has funded an effort to produce an engineering development unit specifically targeted for integration into the NASA Johnson Space Center's Integrated Human Exploration Mission Simulation Facility (INTEGRITY) formally known in part as the Bioregenerative Planetary Life Support Test Complex (Bio-Plex) and the Advanced Water Recovery System Development Facility. The system includes a Wiped-Film Rotating-Disk (WFRD) evaporator redesigned with micro-gravity operation enhancements, which evaporates wastewater and produces water vapor with only volatile components as contaminants. Volatile contaminants, including organics and ammonia, are oxidized in a catalytic reactor while they are in the vapor phase.
Technical Paper

Development of a Membrane Based Gas-Liquid Separator for the Space Station Water Processor

2001-07-09
2001-01-2357
The Water Processor developed for the International Space Station includes a high temperature catalytic reactor that utilizes oxygen gas to oxidize dissolved chemicals. The effluent from the reactor is a mixture of gases (O2, CO2, N2) and hot water. Since the crew has requested that drinking water does not contain any free gas at body temperature (37.8 °C or 100 °F), a phase separator operating at elevated temperatures is required downstream of the catalytic reactor. For this application, Hamilton Sundstrand Space Systems International (HSSSI) has developed a passive Gas Liquid Separator (GLS) that relies on a positive barrier - a membrane - to extract the free gas from the inlet two-phase mixture. The membrane selected is a hollow fiber hydrophobic asymmetric membrane with pore size in the ultra-filtration range. This paper outlines the challenges in both design and operation that were overcome during the development of this device.
Technical Paper

Development of a Miniaturized High Intensity Cryogenic Flow Boiler

2002-07-15
2002-01-2408
An extremely compact heat exchanger is being developed which can boil cryogenic fluids with a liquid heat source at temperatures close to its freezing point. Freezing of the heat source fluid, e.g. water is precluded by the normal flow arrangement. Boiling and superheating of the cryogen occurs as the fluid approaches the heat source in a stack of bonded jet-array laminations. This heat exchanger technology is important in many applications where the storage of fluids at cryogenic temperatures offers substantial advantages in terms of system weight and volume. Often, as in several advanced portable life support system concepts, the advantages include the use of the cryogen as a heat sink in system thermal management. Realizing this benefit and safely conditioning the stored fluid for use requires effective heat transfer between the cryogen and a secondary heat transport fluid.
Technical Paper

Development of a Rotary Separator Accumulator for Use on the International Space Station

2002-07-15
2002-01-2360
A Rotary Separator/Accumulator (RSA) has been developed to function as a phase separator and accumulator in the Oxygen Generator Assembly (OGA) in the microgravity environment of the International Space Station. The RSA design utilizes a fixed housing with rotating disks to create a centrifugal force field to separate hydrogen gas from water. The volume within the assembly is utilized to act as an accumulator for the OGA. During the development of the RSA, design refinements were made to meet the changing system operating requirements. Two proof of concept (POC) units and a “flight-like” development unit were fabricated and tested as system requirements evolved. Testing of the first POC unit demonstrated that a combined rotary separator and accumulator was feasible and showed areas where improvements could be made. The second POC unit incorporated a fifty percent volume increase to accommodate changing system requirements and geometry changes to help reduce power consumption.
Technical Paper

Development, Testing, and Packaging of a Redundant Regenerable Carbon Dioxide Removal System (RRCRS)

2002-07-15
2002-01-2530
Enhancements to the Regenerable Carbon Dioxide Removal System (RCRS) have undergone full-scale, pre-prototype development and testing to demonstrate a redundant system within the volume allotted for the RCRS on the Space Shuttle Orbiter. The concept for a Redundant Regenerable Carbon Dioxide Removal System (RRCRS) utilizes the existing canister of the RCRS, but partitions it into two, independent, two-bed systems. This partitioning allows for two, fully capable RCRS units to be packaged within the original volume, thus reducing stowage volume and launch weight when compared to the flight RCRS plus the backup LiOH system. This paper presents the results of development and testing of a full-scale, pre-prototype RRCRS and includes an overview of the design concept for a redundant system that can be packaged within the existing envelope.
Technical Paper

ISS IATCS Coolant Loop Biocide Implementation

2008-06-29
2008-01-2159
The proliferation and growth of microorganisms in the Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) has been of significant concern since 2001. Initial testing and assessments of biocides to determine bacterial disinfection capability, material compatibility, stability (rate of oxidative degradation and identification of degradation products), solubility, application methodology, impact on coolant toxicity hazard level, and impact on environmental control and life support systems identified a prioritized list of acceptable biocidal agents including glutaraldehyde, ortho-phthalaldehyde (OPA), and methyl isothiazolone. Glutaraldehyde at greater than 25 ppm was eliminated due to NASA concerns with safety and toxicity and methyl isothiazolone was eliminated from further consideration due to ineffectiveness against biofilms and toxicity at higher concentrations.
Technical Paper

International Space Station Waste Collector Subsystem Risk Mitigation Experiment Design Improvements

2002-07-15
2002-01-2304
The International Space Station Waste Collector Subsystem Risk Mitigation Experiment (ISS WCS RME) was flown as the primary (Shuttle) WCS on Space Shuttle flight STS-104 (ISS-7A) in July 2001, to validate new design enhancements. In general, the WCS is utilized for collecting, storing, and compacting fecal & associated personal hygiene waste, in a zero gravity environment. In addition, the WCS collects and transfers urine to the Shuttle waste storage tank. All functions are executed while controlling odors and providing crew comfort. The ISS WCS previously flew on three Shuttle flights as the Extended Duration Orbiter (EDO) WCS, as it was originally designed to support extended duration Space Shuttle flights up to 30 days in length. Soon after its third flight, the Space Shuttle Program decided to no longer require 30 day extended mission duration capability and provided the EDO WCS to the ISS Program.
Technical Paper

Investigation of Extravehicular Activity Requirements and Techniques at an Arctic Mars Analog Field Science Base

2001-07-09
2001-01-2199
Designing an EVA system for Mars’s exploration will require a thorough understanding of the mission. Data are available from NASA mission studies, preliminary EVA requirements document, and Apollo program experience. However, additional relevant field experience is required to complete the picture. NASA has addressed this through field tests using prototype EVA equipment and field science programs like the Haughton Mars Project on Devon Island. There, a group of scientists conducts scientific exploration in and around an impact crater in a polar desert similar to expected exploration sites on Mars. Hamilton Sundstrand Space Systems Intl. (HSSSI) EVA system engineers participated in the summer 2000 field research program to gain firsthand knowledge of field science activities. By using a Mars EVA system mockup, they were also able to conduct experiments on EVA system impacts on field science tasks. This field experience and some of its results are described in this paper.
Technical Paper

Liquid Cooling Garment Adaptation to Enhance Surgical Outcomes

2003-07-07
2003-01-2339
Hypothermia is a well documented problem for surgical patients and is historically addressed by the use of a variety of warming aids and devices applied to the patient before, during, and after surgery. Their effectiveness is limited in many surgeries by practical constraints of surgical access, and hypothermia remains a significant concern. Increasing the temperature of the operating room has been proposed as an alternative solution. However, operating room temperatures must be cool enough to limit thermal stress on the surgical team despite the heat transport barriers imposed by protective sterile garments. Space technology in the form of the liquid cooling garment worn by EVA astronauts answers this need. Hamilton Sundstrand Space Systems International (HSSSI) has been working with Hartford Hospital to adapt liquid cooling garment technology for use by surgical teams in order to allow them to work comfortably in warmer operating room environments.
Technical Paper

Performance Testing of a New Membrane Evaporator for the Thermoelectric Integrated Membrane Evaporator System (TIMES) Water Processor

2002-07-15
2002-01-2525
The TIMES system was evaluated to determine its ability to process reverse osmosis (RO) brine as one of the Advanced Water Processor steps. Since preliminary testing performed in 1998 showed that the membrane typically used in the process (Nafion 117) offered a very poor ammonia rejection, a search for an alternate membrane exhibiting high ammonia rejection capability was initiated under NASA-JSC funding. This investigation has resulted in the selection of a PolyVinylAlcohol (PVA) composite membrane as a replacement. When processing RO brine and untreated human urine as feeds, the Pervap 2201 membrane showed a 96% ammonia rejection over a large range of ammonia concentration. The water permeation rates in both laboratory-scale and pilot scale testings were also similar to the Nafion. The water permeance of the Pervap 2201 was approximately 7.5 kg/h/m2/atm (1.1 lb/h/m2/psi).
Technical Paper

Performance of WPA Conductivity Sensor During Two-Phase Fluid Flow in Microgravity

2003-07-07
2003-01-2693
The Conductivity Sensor designed for use in the Node 3 Water Processor Assembly (WPA) was based on the existing Space Shuttle application for the fuel cell water system. However, engineering analysis has determined that this sensor design is potentially sensitive to two- phase fluid flow (gas/liquid) in microgravity. The source for this sensitivity is the fact that free gas will become lodged between the sensor probe and the wall of the housing without the aid of buoyancy in 1-g. Once gas becomes lodged in the housing, the measured conductivity will be offset based on the volume of occluded gas. A development conductivity sensor was flown on the NASA Microgravity Plane (KC-135) to measure the offset, which was determined to range between 0 and 50%. This range approximates the offset experienced in 1-g gas sensitivity testing.
Technical Paper

Requirements and Potential for Enhanced EVA Information Interfaces

2003-07-07
2003-01-2413
NASA has long recognized the advantages of providing improved information interfaces to EVA astronauts and has pursued this goal through a number of development programs over the past decade. None of these activities or parallel efforts in industry and academia has so far resulted in the development of an operational system to replace or augment the current extravehicular mobility unit (EMU) Display and Controls Module (DCM) display and cuff checklist. Recent advances in display, communications, and information processing technologies offer exciting new opportunities for EVA information interfaces that can better serve the needs of a variety of NASA missions. Hamilton Sundstrand Space Systems International (HSSSI) has been collaborating with Simon Fraser University and others on the NASA Haughton Mars Project and with researchers at the Massachusetts Institute of Technology (MIT), Boeing, and Symbol Technologies in investigating these possibilities.
X