Refine Your Search

Topic

Search Results

Technical Paper

A New Empirical Formula for Calculating Vehicles' Frontal Area

2011-04-12
2011-01-0763
The main objective of this research is to find a general empirical formula to predict vehicle frontal area applied to most types of vehicles. This was done on 21 vehicles; passenger cars, buses and trucks by calculating their frontal area by using image processing technique on cars photos extracted from catalogues. The software (Data Fit) is used to establish the required empirical formula. The results showed that the empirical formula is simple and accurate enough for finding out the vehicles frontal areas.
Technical Paper

A Novel Hybrid Roll Control Strategy for Partially Loaded Tanker Trucks

2003-11-10
2003-01-3386
In this paper, a hybrid roll control system, including passive and active roll control units, is designed to improve the roll dynamics of tanker vehicles and to reduce the lateral shifts of the liquid cargo due to lateral accelerations. The passive control system consists of radial partitions installed inside the vehicle container. These partitions rotate in phase with the liquid cargo as one unit about the longitudinal axis of the container in response to the induced momentum forces due to the lateral acceleration excitation. Torsion dampers are fixed between the partitions and the container's front and rear walls to reduce the oscillating motion of the liquid cargo. While the passive partition dampers control the dynamics of the liquid cargo inside the container, the dampers of the vehicle suspension are switchable, generating anti-roll damping moments based on the lateral acceleration level and the container filling ratio.
Technical Paper

A Preview Type-2 Fuzzy Controller Design for the Semi-active Suspension to Improve Adhesion Characteristics during Braking and Handling

2021-06-28
2021-01-5069
A full vehicle of a preview control semi-active suspension system based on an interval type-2 fuzzy controller design using a magnetorheological (MR) damper to improve ride comfort is investigated in this paper. It is integrated with the force distribution system to obtain the optimal rate of road adhesion during braking and handling. The nonlinear suspension model is derived by considering vertical, pitch, and roll motions. The preview interval type-2 fuzzy technique is designed as a system controller, and it is attached with a Signum function method as a damper controller to turn on the voltage for the MR damper. This voltage is adjusted for each wheel based on the external excitation generated by road roughness in order to enhance ride comfort. To describe the effectiveness and adaptable responses of the preview controlled semi-active system, the performance is compared with both the passive and MR passive suspension systems during time and frequency domains.
Technical Paper

Adaptive Control Strategy of a Kalman Filter Active Vehicle Suspension

2003-05-05
2003-01-1413
In this paper, the Kalman filter algorithm is used to design a practical adaptive control strategy. The adaptation is intended to adjust the system operation according to the changes of road input. A moderate adaptive time of at least 3 seconds is used. Limit stops are added to prevent the increase in the wheel travel behind the specified limit. The active suspension feedback system is designed based on measuring only the suspension displacement. A gain scheduling adaptive scheme which consists of four sets of state feedback gains is designed. The estimation process of dynamic tyre deflection and other necessary state variables through the Kalman filter is illustrated. Among other things, this estimate is used to derive the gain scheduling adaptive scheme. The strategy is applied to a quarter car active suspension system. Results are generated at a constant speed on random road profiles.
Journal Article

Application of Nonparametric Magnetorheological Damper Model in Vehicle Semi-active Suspension System

2012-04-16
2012-01-0977
Nonparametric models do not require any assumptions on the underlying input/output relationship of the system being modeled so that they are highly useful for studying and modeling the nonlinear behaviour of Magnetorheological (MR) fluid dampers. However, the application of these models in semi-active suspension is very rare and most theoretical works available on this topic address the application of parametric models (e.g. Modified Bouc-Wen model). In this paper, a nonparametric MR damper model based on the Restoring Force Surface technique is applied in vehicle semi-active suspension system. It consists of a three dimensional interpolation using Chebyshev orthogonal polynomial functions to simulate the MR damper force as a function of the displacement, velocity and input voltage. Also, a damper controller based on a Signum function method is proposed, for the first time, for use in conjunction with the system controller of a semi-active vehicle suspension.
Technical Paper

Application of a Preview Control with an MR Damper Model Using Genetic Algorithm in Semi-Active Automobile Suspension

2019-02-05
2019-01-5006
A non-linear mathematical model of a semi-active (2DOF) vehicle suspension using a magnetorheological (MR) damper with information concerning the road profile ahead of the vehicle is proposed in this paper. The semi-active vibration control system using an MR damper consists of two nested controllers: a system controller and a damper controller. The fuzzy logic technique is used to design the system controller based on both the dynamic responses of the suspension and the Padé approximation algorithm method of a preview control to evaluate the desired damping force. In addition, look-ahead preview of the excitations resulting from road irregularities is used to quickly mitigate the effect of the control system time delay on the damper response.
Technical Paper

Automatic Recognition of Truck Chassis Welding Defects Using Texture Features and Artificial Neural Networks

2019-04-02
2019-01-1119
Welding is an excellent attachment or repair method. The advanced industries such as oil, automotive industries, and other important industries need to rely on reliable welding operations; collapse because of this welding may lead to an excessive cost in money and risk in human life. In the present research, an automatic system has been described to detect, recognize and classify welding defects in radiographic images. Such system uses a texture feature and neural network techniques. Image processing techniques were implemented to help in the image array of weld images and the detection of weld defects. Therefore, a proposed program was build in-house to automatically classify and recognize eleven types of welding defects met in practice.
Technical Paper

Compound Mass Liquid Column Damper for Attenuating the Vibration of the Structures

2020-10-14
2020-01-5047
This study deals with the mitigation of the vibration of the structure using a compound mass liquid column damper (MLCD). To study the damping efficiency of the MLCD, the mathematical model of the single degree of freedom structure integrated with MLCD including the damping due to the moving mass in the horizontal portion of the damper is derived. The equivalent-damping factor of the MLCD is determined by simulating the interaction between the moving mass and the liquid using the fluid-structure interaction (FSI) technique. A 3D FSI model is solved numerically using the ANSYS Workbench-CFX package. The global search optimization algorithm is applied to find the optimum tuning frequency and the optimum mass diameter ratio over a wide range of mass ratio and excitation amplitude. The optimization issue is solved with considering the limits of the maximum displacement of the liquid and the mass.
Technical Paper

Dynamic Lively Model to Utilize the Resources in a Vehicle

2006-04-03
2006-01-0521
The work presented here is to develop a monitoring life mathematical model to manage periodically the operations job orders of vehicle service station. This period is occasionally an hour, a day or a longer period than that, and is normally determined by the service manager. Model parameters are changeable over these periods due to dynamic movable situation of a vehicle markets. The objective function is to maximize the total income from vehicles service operations at all considered conventional model or with self expert prognostic system by taken into account least stop of vehicles, while keeping in mind the satisfying the customer demands and the service quality. The decision variables indicate the number of various technical operations to be performed for different types of vehicles.
Technical Paper

Dynamic Modeling of Vehicle Gearbox for Early Detection of Localized Tooth Defect

2008-10-07
2008-01-2630
Dynamic modeling of the gear vibration is a useful tool to study the vibration response of a geared system under various gear parameters and operating conditions. An improved understanding of vibration signal is required for early detection of incipient gear failure to achieve high reliability. However, the aim of this work is to make use of a 6-degree-of-freedom gear dynamic model including localized tooth defect for early detection of gear failure. The model consists of a gear pair, two shafts, two inertias representing load and prime mover and bearings. The model incorporates the effects of time-varying mesh stiffness and damping, backlash, excitation due to gear errors and modifications. The results indicate that the simulated signal shows that as the defect size increases the amplitude of the acceleration signal increases. The crest factor and kurtosis values of the simulated signal increase as the fault increases.
Technical Paper

Effect of Semi-active Suspension Controller Design Using Magnetorheological Fluid Damper on Vehicle Traction Performance

2020-10-30
2020-01-5101
In order to achieve the high capability of the ride comfort and regulating the tire slip ratio, a preview of a nonlinear semi-active vibration control suspension system using a magnetorheological (MR) fluid damper is integrated with traction control in this paper. A controlled semi-active suspension system, which consists of the system controller and damper controller, was used to develop ride comfort, while the traction controller is utilized to reduce a generated slip between the vehicle speed and rotational rate of the tire. Both Fractional-Order Filtered Proportional-Integral-Derivative (P¯IλDμ) and Fuzzy Logic connected either series or parallel with P¯IλDμ are designed as various methodologies of a system controller to generate optimal tracking of the desired damping force. The signum function method is modified as a damper controller to calculate an applied input voltage to the MR damper coil based on both preview signals and the desired damping force tracking.
Technical Paper

Evaluation of Semi-Active Vehicle Suspension System Performance Incorporating Magnetorheological Damper Using Optimized Feedback Controller Based on State-Derivative

2024-04-09
2024-01-2288
The purpose of this paper is to investigate the efficiency of a quarter car semi-active suspension system with the state-derivative feedback controller using the Bouc-Wen model for magneto-rheological fluids. The magnetorheological (MR) dampers are classified as adaptive devices because of their characteristics can be easily modified by applying a controlled voltage signal. Semi-active suspension with MR dampers combines the benefits of active and passive suspension systems. The dynamic system captures the basic performance of the suspension, including seat travel distance, body acceleration, passenger acceleration, suspension travel distance, dynamic tire deflection and damping force. With minimal reliance on the use of sensors, the investigation aims to improve ride comfort and vehicle stability. In this study, the state derivative feedback controller and Genetic algorithm (GA) is utilized to improve the performance of semi-active suspension system.
Technical Paper

Hybrid Shape Optimization and Failure Analysis of Laminated Fibrous Composite E-Springs for Vehicle Suspension

2006-10-31
2006-01-3586
A hybrid search optimization is presented in order to optimize hybrid laminated fibrous composite E-springs for vehicle suspension systems. This optimization is conducted with both of the geometrical configuration and laminate structure of the E-spring. A genetic algorithm along with a hill-climbing random-walk approach are used through a developed NURBS-based technique in order to conduct this optimization. A mathematical-modeling-based mid-ware technology is introduced in order to fully automate the optimization process through linking the run engines of mathematical modeling and finite element analysis from within the mathematical modeling engine. A hybrid approach of the inter-laminar shear stress and Tsai-Wu criteria is first implemented in order to identify failure indices of the resulting optimum shape and laminate structure.
Technical Paper

Identification of the Nonlinear Dynamic Behavior of Magnetorheological Fluid Dampers using Adaptive Neuro-Fuzzy Inference System

2023-04-11
2023-01-0123
Adaptive neuro-fuzzy inference system (ANFIS) technique has been developed and applied by numerous researchers as a very useful predictor for nonlinear systems. In this paper, non-parametric models have been investigated to predict the direct and inverse nonlinear dynamic behavior of magnetorheological (MR) fluid dampers using ANFIS technique to demonstrate more accurate and efficient models. The direct ANFIS model can be used to predict the damping force of the MR fluid damper and the inverse dynamic ANFIS model can be used to offer a suitable command voltage applied to the damper coil. The architectures and the learning details of the direct and inverse ANFIS models for MR fluid dampers are introduced and simulation results are discussed. The suggested ANFIS models are used to predict the damping force of the MR fluid damper accurately and precisely. Moreover, validation results for the ANFIS models are proposed and used to evaluate their performance.
Technical Paper

Injection Characteristics of Rapeseed Methyl Ester versus Diesel Fuel in Pump-Line-Nozzle Injection System

2008-06-23
2008-01-1590
The transformation of rapeseed oil into methyl ester through the transestrification process normally produce biodiesel fuel with kinematic viscosity almost double that of the commercial diesel fuel. The bulk modulus of biodiesel is also higher than that for the conventional diesel fuel. In this paper, the effects of the two physical properties on the injection characteristics of Rapeseed Methyl Ester (RME) are discussed. The injection characteristics considered here were namely; nozzle chamber pressure, needle lift, and fuel injection rate. The mutual effects of engine speed and delivery pipe length were also analyzed. A previously developed computer model was used to simulate the injection process of the conventional pump-line-nozzle injection system. An explicit finite difference scheme was adopted to solve the unsteady flow equation within the delivery pipe.
Technical Paper

Integrated Control, Regulated DC Supply with High Power Quality for Automotive Applications

2008-10-07
2008-01-2710
The DC power supply is ingredient part in the automotive industries as it has been used as a DC power supplies for a wide range of loads. Meanwhile, it is mandatory for battery charging. These types however, causes many problems such as poor power factor, high input current harmonics distortion and uncontrolled DC voltage. In this paper, an improved input power factor correction that uses a combined control system consists of two nested loops with a feedback of the DC voltage and input current as long as a feed forward from the output power. The system has been analyzed, modeled, simulated and experimentally verified. The novel feature of the proposed control scheme resides in fact that it is not only achieve nearly unity power factor with minimum input current total harmonics distortion only but it also introduce superior performance in DC voltage transient conditions.
Technical Paper

Interval Lower Singleton Fuzzy Optimal Controller Design of Magnetorheological Seat Suspension Integrated with Semi-Active Vehicle Suspension System

2023-09-22
2023-01-5066
In this paper, semi-active MR main suspension system based on system controller design to minimize pitch motion linked with MR-controlled seat suspension by considering driver’s biodynamics is investigated. According to a fixed footprint tire model, the transmitted tire force is determined. The linear-quadratic Gaussian (LQG) system controller is able to enhance ride comfort by adjusting damping forces based on an evaluation of body vibration from the dynamic responses. The controlled damping forces are tracked by the signum function controllers to evaluate the supply voltages for the front and rear MR dampers. Based on the sprung mass acceleration level and its derivative as the inputs, the optimal type-2 (T-2) fuzzy seat system controller is designed to regulate the controlled seat MR damper force.
Technical Paper

Investigation of Different Parameter Based Control Strategies for Active Independent Front Steering (AIFS) System

2021-04-06
2021-01-0967
The previous research work on Active Independent Front Steering (AIFS) system concluded an enhanced vehicle response and tire adhesion utilization. Some research emphasizes the importance of Tire Work load (TWL) in the generation of maximum possible tire forces that ensures vehicle controllability and stability. In this study, a mathematical model is constructed to investigate the effect of TWL as a parameter on AIFS performance. Toward such a target, a new Fuzzy control strategy is developed based on TWL and vehicle yaw rate as control inputs for the AIFS controller. Unfortunately, the TWL is not a measurable parameter or even easy to be estimated. Consequently, another control strategy was implemented based on slip angle and vehicle yaw rate as inputs for the AIFS controller.
Technical Paper

Investigation of the Interaction between the Vehicle Vertical Vibration and Driveline Torsional Vibration Using A Hydro-Pneumatic Limited Bandwidth Active Suspension System

2021-04-06
2021-01-0700
1 Rear wheel drive vehicles have a long driveline using a propeller shaft with two universal joints. Consequently, in this design usage of universal joints within vehicle driveline is inevitable. However, the angularity of the driveshaft resulting from vertical oscillations of the rear axle causes many torsional and bending fluctuations of the driveline. Unfortunately, most of the previously published research work in this area assume the propeller inclination angle is constant under all operating conditions. As a matter of fact, this assumption is not accurate due to the vehicle body attitudes either in pitch or bounce motions. Where the vehicle vibration due to the suspension flexibility, either passive or active type, exists.
Technical Paper

Minimizing Power Consumption of Fully Active Vehicle Suspension System Using Combined Multi-Objective Particle Swarm Optimization

2019-07-16
2019-01-5077
This paper introduces an optimum design for a feedback controller of a fully active vehicle suspension system using the combined multi-objective particle swarm optimization (CMOPSO) in order to minimize the actuator power consumption while enhancing the ride comfort. The proposed CMOPSO algorithm aims to minimize both the vertical body acceleration and the actuator power consumption by searching about the optimum feedback controller gains. A mathematical model and the equations of motion of the quarter-car active suspension system are considered and simulated using Matlab/Simulink software. The proposed active suspension is compared with both active suspension system controlled using the linear quadratic regulator (LQR) and the passive suspension systems. Suspension performance is evaluated in time and frequency domains to verify the success of the proposed control technique.
X